Advertisement

Static and Axially Symmetric Soliton Solutions to the Self-Dual SU(3) and SU(2) Gauge Fields in a Euclidean Space

  • Demetrios B. Papadopoulos
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

The Euler-Lagrange equations for a non Abelian gauge theory can be derived from a Lagrangian of the form1
$$ L = - \left( {1/2} \right){I_{{ab}}}{F^{{{a_{{\mu v}}}}}}{F^{{b\mu v}}} $$
(1.1)
where Iab is the metric tensor of the bilinear form;a,b=1,2,3….,d,with d being the dimension of the metric
$$ {F^{{{i_{{\mu v}}}}}} = {b^{{{i_{{\mu .v}}}}}} - {b^{{{i_{{v.\mu }}}}}} - {C^{{{i_{{jk}}}}}}{b^{{{j_{\mu }}}}}{b^{{{k_{v}}}}} $$
(1.2)
Ci jk are the structure coefficients and bi μ are the self-dual gauge potentials.

Keywords

Soliton Solution Gauge Field Seed Solution Einstein Field Equation Structure Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charles Nash and Siddhartha Sen, “Topology and Geometry for Physicists”, Academic Press, New York (1983).MATHGoogle Scholar
  2. 2.
    C.N. Yang, “Condition of self-duality for SU(2) gauge fields on Euclidean four-dimensional space”, Phys.Rev.Lett., 38:1377 (1977).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    L. Witten, “Static axially symmetric solutions of self-dual SU(2) gauge fields in Euclidean four-dimensional space”, Pys.Rev.D., 18:3877 (1979).Google Scholar
  4. 4.
    M.K. Prasad, “Yang’s R gauge for self-dual SU(3) gauge fields”, Phys.Rev.D., 17:3243 (1978).MathSciNetADSCrossRefGoogle Scholar
  5. 5a.
    V.A. Belinski and V.E. Zakharov, Zh.Eksp.Teor.Fiz., 75:1955 (1978)ADSGoogle Scholar
  6. 5b.
    V.A. Belinski and V.E. Zakharov, [Sov.Phys.JETP, 48:985 (1978)]ADSGoogle Scholar
  7. 6.
    P.S. Letelier, “Soliton solutions for self-dual Su(2) gauge fields on Euclidean space”, J.Math.Phys., 23:1175 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 7.
    D. Papadopoulos, “Soliton solutions for self-dual SU(3) gauge field theory”, J.Math.Phys., 26:2990 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 8.
    D. Papadopoulos, “Soliton solutions for self-dual SU(2) gauge fields on Euclidean space obtained from a nondiagonal seed solution”, Phys.Lett.A., 127:34 (1988).CrossRefGoogle Scholar
  10. 9.
    P.S. Letelier, “Soliton solutions to the vacuum Einstein equations obtained from a nondiagonal seed solution”, J.Math.Phys., 27:564 (1986).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Demetrios B. Papadopoulos
    • 1
  1. 1.Department of Physics Section of Astrophysics, Astronomy and MechanicsUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations