Lattice Approach of the Antiferromagnetic Heisenberg Model in 2+1 Dimensions and the Hopf Chern-Simons Terms

  • Wen-Zhou Li
Part of the NATO ASI Series book series (NSSB, volume 245)


The 2+1 dimensional antiferromagnetic (A.F.) Heisenberg model, which is equivalent to the Hubbard model at half filling, had been intensively studied recently, since P.W. Anderson proposed the pioneering ideas about the high Tc superconductivity. Two space dimensions has the novel feature that the quantum statistics may be the fractional statistics. The fractional quantum Hall effects provide the first novel example of the application of fractional statistics to condensed matter physics2). In high Tc superconductor, as the cupper oxide layers play a crucial role, there has been much speculation recently3) that the novel feature of high Tc superconductivity should come from the novel feature of fractional statistics.


Continuum Limit Hubbard Model Gauge Field Fractional Statistic Heisenberg Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1]
    P.W. Anderson, Science 235, 1196 (1987)ADSCrossRefGoogle Scholar
  2. 2]
    The Quantum Hall effect, edited by R.E. Prange and S.M. Girvin, (Springer, New York 1987)Google Scholar
  3. 3a]
    R.B. Langhlin, Science 242, 525 (1988);ADSCrossRefGoogle Scholar
  4. 3b]
    R.B. Langhlin, Phys. Rev. Lett. 60, 2677 (1988);ADSCrossRefGoogle Scholar
  5. 3c]
    V. Kalmeyes and R.B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987)ADSCrossRefGoogle Scholar
  6. 4]
    F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1980)MathSciNetADSCrossRefGoogle Scholar
  7. 5]
    D.P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phys. B251, 117 (1985)MathSciNetADSCrossRefGoogle Scholar
  8. 6a]
    N. Redlich, Phys. Rev. Lett. 52, 18 (1984);MathSciNetADSCrossRefGoogle Scholar
  9. 6b]
    N. Redlich, Phys. Rev. D29, 2366 (1984);MathSciNetADSGoogle Scholar
  10. 7a]
    A.M. Polyakov, Mod. Phys. Lett. A3, 325 (1988);MathSciNetADSGoogle Scholar
  11. 7b]
    Z.E. Dzyakoshinskii, A.M. Polyakov, P.W. Wiegmann, Phys. Lett. A127, 112 (1988)ADSGoogle Scholar
  12. 8a]
    F.D.M. Haldane, Phys. Rev. Lettt. 61, 1029 (1988);MathSciNetADSCrossRefGoogle Scholar
  13. 8b]
    X.G. Wen, A. Zee, Phys. Rev. Lett. 61, 1025 (1988);MathSciNetADSCrossRefGoogle Scholar
  14. 8c]
    E. Frandkin, M. Stone, Phys. Rev. B38, 7215 (1988);ADSGoogle Scholar
  15. 8d]
    L.B. Zoffe, A.Z. Larkin, Int. J. Mod. Phys. B2, 203 (1988)ADSGoogle Scholar
  16. 9a]
    G. Baskaran and P.W. Anderson, Phys. Rev. B37, 580 (R.C.) (1988);ADSGoogle Scholar
  17. 9b]
    P.W. Anderson, G. Baskaran, Z. Zou, T. Hsu, Phys. Rev. Lett. 58, 2790 (1987);ADSCrossRefGoogle Scholar
  18. 9c]
    I. Affleck and J.B. Marston, Phys. Rev. B37, 3774 (1988);ADSGoogle Scholar
  19. 9d]
    G. Kotliar, Phys. Rev. B37, 3644 (1988)ADSGoogle Scholar
  20. 10a]
    P.W. Anderson in Proc. of the International School of Physics “Enrico Fermi”, July 1987: Frontiers and Borderlines in Many Body Particle Physics (North Holland, Amsterdam, 1988);Google Scholar
  21. 10b]
    I. Affleck, Z. Zou, T. Hsu and P.W. Anderson, Phys. Rev. B38, 2926 (1988);Google Scholar
  22. 10c]
    E. Dagotto, E. Fradkin and A. Moreo, Phys. Rev. B38, 2926 (1988)ADSGoogle Scholar
  23. 11]
    H. Kluberg-Stern, A. Morel, and O. Nopoly, Nucl. Phys. B220, 447 (1983)ADSCrossRefGoogle Scholar
  24. 12]
    C. Burden and A.N. Burkitt, Europhys. Lett. 3, 545 (1987)ADSCrossRefGoogle Scholar
  25. 13]
    A.P. Polychronakos, Phys. Rev. Lett. 60, 1920 (1988)MathSciNetADSCrossRefGoogle Scholar
  26. 14]
    R.D. Pisarski, Phys. Rev. D29, 2423 (1984)ADSGoogle Scholar
  27. 15]
    X.G. Wen, Frank Wilczek, and A. Zee, Phys. Rev. B39, 11413 (1989)ADSGoogle Scholar
  28. 16]
    D. Kheshchenko, P.B. Wiegmann, Phys. Lett. B225, 279 (1989), and Landau Institute preprint (1989)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Wen-Zhou Li
    • 1
    • 2
  1. 1.Dept. of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Theoretical Physics BranchChalk River Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations