Gravity as an SO(3,2) Gauge Theory

  • Siegfried Gotzes
Part of the NATO ASI Series book series (NSSB, volume 245)


EINSTEIN-CARTAN-gravity can be viewed as a gauge theory with the gauge group SO(3,2), where a suitable quadratic lagrangian leads to the EINSTEIN-equations with cosmological term. Using the soldering of KOBAYASHI we show how the theory is realized in a CLIFFORD-algebrabundle.


Gauge Theory Gauge Group Soldering Form Principal Bundle Connection Form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Atiyah, R. Bott, A. Shapiro: Topology 3 Suppl. 1, 3 (1964)MathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Bleecker: Gauge Theory and Variational Principles Addison-Wesley 1981MATHGoogle Scholar
  3. [3]
    P. Budinich, A, Trautman: The Spinorial Chessboard Springer 1988Google Scholar
  4. [4]
    K. Bugajska: Int. Journ. of Theor. Phys. 18.2, 77 (1979)MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Y. Choquet-Bruhat, C. DeWitt-Morette: Analysis, Manifolds and Physics North Holland 1982MATHGoogle Scholar
  6. [6]
    R. Geroch: Journ. Math. Phys. 9, 1739 (1958);MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    R. Geroch: Journ. Math. Phys. 11, 343 (1970)ADSMATHCrossRefGoogle Scholar
  8. [7]
    M. Göckeler, T Schücker: Differential Geometry, Gauge Theory and Gravity Cambridge University Press 1987CrossRefGoogle Scholar
  9. [8]
    W. Greub: Multilinear Algebra Springer 1978MATHCrossRefGoogle Scholar
  10. [9]
    F. Hehl: Gen. Rel. Grav. 4.4, 333 (1973);MathSciNetADSCrossRefGoogle Scholar
  11. [9]
    F. Hehl: Gen. Rel. Grav. 5.5, 491 (1974)MathSciNetADSCrossRefGoogle Scholar
  12. [10]
    S. Helgason in Battelle Rencontres (eds deWitt, Wheeler) 1 (1967)Google Scholar
  13. [11]
    A. Hirshfeld in The Fundamental Interaction (eds Debrus, Hirshfeld) 165 (1988)Google Scholar
  14. [12]
    D. Husemoller: Fibre Bundles Springer 1966MATHCrossRefGoogle Scholar
  15. [13]
    D. Ivanenko, S. Sardanashvili: Phys. Rep. 94.1 (1983)Google Scholar
  16. [14]
    K. Kaminura, T. Fukuyama: Mod. Phys. Lett. A 4.7, 621 (1989)ADSCrossRefGoogle Scholar
  17. [15]
    S. Kobayashi: Annali di Mat. 43, 119 (1957)CrossRefGoogle Scholar
  18. [16]
    S. Kobayashi, K. Nomizu: Foundations of Differential Geometry I, II J. Wiley & Sons 1969Google Scholar
  19. [17]
    B. Kostant, S. Sternberg: Ann. Phys, 176, 45 (1987)MathSciNetADSGoogle Scholar
  20. [18]
    A. Lichnerowicz in Battelle Rencontres (eds DeWitt, Wheeler) 107 (1968)Google Scholar
  21. [19]
    E. Lord: Phys. Lett. 65A.1, 1 (1978)Google Scholar
  22. [20]
    S. MacDowell, F. Mansouri: Phys. Rev. Lett. 38.14, 739 (1977)Google Scholar
  23. [21]
    E. Mielke: Geometrodynamics of Gauge Fields Akademie-Verlag 1987MATHGoogle Scholar
  24. [22]
    E. Mielke: Progress in Metric-Affine Gauge Theory Talk given at the Physikertagung Bonn 1989Google Scholar
  25. [23]
    F. Müller-Hoissen: Dissertation, Göttingen 1983Google Scholar
  26. [24]
    R. Percacci: Geometry of Nonlinear Field Theories World Scientific 1986MATHGoogle Scholar
  27. [25]
    R. Sexl, H. Urbantke: Gravitation und Kosmologie Wissenschaftsverlag 1983Google Scholar
  28. [26]
    T. Shirafuji, M. Suzuki to be published in Prog. Theor. Phys.Google Scholar
  29. [27]
    N. Steenrod: The Topology of Fibre Bundles Princeton Univ. Press 1951MATHGoogle Scholar
  30. [28]
    K. Stelle, P. West: Phys. Rev. D 21.6, 1466 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Siegfried Gotzes
    • 1
  1. 1.Universität DortmundGermany

Personalised recommendations