Gravity as an SO(3,2) Gauge Theory

  • Siegfried Gotzes
Part of the NATO ASI Series book series (NSSB, volume 245)


EINSTEIN-CARTAN-gravity can be viewed as a gauge theory with the gauge group SO(3,2), where a suitable quadratic lagrangian leads to the EINSTEIN-equations with cosmological term. Using the soldering of KOBAYASHI we show how the theory is realized in a CLIFFORD-algebrabundle.


Gauge Theory Gauge Group Soldering Form Principal Bundle Connection Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Atiyah, R. Bott, A. Shapiro: Topology 3 Suppl. 1, 3 (1964)MathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Bleecker: Gauge Theory and Variational Principles Addison-Wesley 1981MATHGoogle Scholar
  3. [3]
    P. Budinich, A, Trautman: The Spinorial Chessboard Springer 1988Google Scholar
  4. [4]
    K. Bugajska: Int. Journ. of Theor. Phys. 18.2, 77 (1979)MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Y. Choquet-Bruhat, C. DeWitt-Morette: Analysis, Manifolds and Physics North Holland 1982MATHGoogle Scholar
  6. [6]
    R. Geroch: Journ. Math. Phys. 9, 1739 (1958);MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    R. Geroch: Journ. Math. Phys. 11, 343 (1970)ADSMATHCrossRefGoogle Scholar
  8. [7]
    M. Göckeler, T Schücker: Differential Geometry, Gauge Theory and Gravity Cambridge University Press 1987CrossRefGoogle Scholar
  9. [8]
    W. Greub: Multilinear Algebra Springer 1978MATHCrossRefGoogle Scholar
  10. [9]
    F. Hehl: Gen. Rel. Grav. 4.4, 333 (1973);MathSciNetADSCrossRefGoogle Scholar
  11. [9]
    F. Hehl: Gen. Rel. Grav. 5.5, 491 (1974)MathSciNetADSCrossRefGoogle Scholar
  12. [10]
    S. Helgason in Battelle Rencontres (eds deWitt, Wheeler) 1 (1967)Google Scholar
  13. [11]
    A. Hirshfeld in The Fundamental Interaction (eds Debrus, Hirshfeld) 165 (1988)Google Scholar
  14. [12]
    D. Husemoller: Fibre Bundles Springer 1966MATHCrossRefGoogle Scholar
  15. [13]
    D. Ivanenko, S. Sardanashvili: Phys. Rep. 94.1 (1983)Google Scholar
  16. [14]
    K. Kaminura, T. Fukuyama: Mod. Phys. Lett. A 4.7, 621 (1989)ADSCrossRefGoogle Scholar
  17. [15]
    S. Kobayashi: Annali di Mat. 43, 119 (1957)CrossRefGoogle Scholar
  18. [16]
    S. Kobayashi, K. Nomizu: Foundations of Differential Geometry I, II J. Wiley & Sons 1969Google Scholar
  19. [17]
    B. Kostant, S. Sternberg: Ann. Phys, 176, 45 (1987)MathSciNetADSGoogle Scholar
  20. [18]
    A. Lichnerowicz in Battelle Rencontres (eds DeWitt, Wheeler) 107 (1968)Google Scholar
  21. [19]
    E. Lord: Phys. Lett. 65A.1, 1 (1978)Google Scholar
  22. [20]
    S. MacDowell, F. Mansouri: Phys. Rev. Lett. 38.14, 739 (1977)Google Scholar
  23. [21]
    E. Mielke: Geometrodynamics of Gauge Fields Akademie-Verlag 1987MATHGoogle Scholar
  24. [22]
    E. Mielke: Progress in Metric-Affine Gauge Theory Talk given at the Physikertagung Bonn 1989Google Scholar
  25. [23]
    F. Müller-Hoissen: Dissertation, Göttingen 1983Google Scholar
  26. [24]
    R. Percacci: Geometry of Nonlinear Field Theories World Scientific 1986MATHGoogle Scholar
  27. [25]
    R. Sexl, H. Urbantke: Gravitation und Kosmologie Wissenschaftsverlag 1983Google Scholar
  28. [26]
    T. Shirafuji, M. Suzuki to be published in Prog. Theor. Phys.Google Scholar
  29. [27]
    N. Steenrod: The Topology of Fibre Bundles Princeton Univ. Press 1951MATHGoogle Scholar
  30. [28]
    K. Stelle, P. West: Phys. Rev. D 21.6, 1466 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Siegfried Gotzes
    • 1
  1. 1.Universität DortmundGermany

Personalised recommendations