Advertisement

The Parametric Manifold Picture of Space-Time

  • Zoltán Perjés
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

Parametric manifolds are reparametrization-invariant geometric structures describing space-time and internal degrees of freedom in a unified framework. Using the theory of parametric spinors, a decomposition of the space-time in General Relativity is developed with respect to the 3-space of trajectories of a time-like or space-like vector field. The parametric 3+1 decomposition surpasses the ADM formalism in generality since it is possible even in space-times which do not admit a space-like foliation.

Keywords

Soldering Form Covariant Derivative Bianchi Identity Spinor Index Parametric Spinor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnowitt, R., Deser, S. and Misner, C. W., in Gravitation, Ed. Witten, L. (Wiley, 1962)Google Scholar
  2. [2]
    Gödel, K., Rev. Mod. Phys. 21, 447 (1949)ADSMATHCrossRefGoogle Scholar
  3. [3]
    Ehlers, J., in: Les théories relativistes de ¡a gravitation (CNRS, Paris, 1959)Google Scholar
  4. [4]
    Schouten, J. A.: Ricci-calculus (Springer, Berlin, 1954)MATHCrossRefGoogle Scholar
  5. [5]
    Stachel, J.: Congruences of subspaces, in: Gravitation and Geometry, Eds. Rindler, W. and Trautman, A. (Bibliopolis, 1987)Google Scholar
  6. [6]
    Lottermoser, M.: Über den Newtonschen Grenzwert der Allgemeinen Relativitätstheorie und die relativistische Erweiterung Newtonscher Anfangsdaten (Dissertation, Munich, 1988)Google Scholar
  7. [7]
    Zelmanov, A. L.: K relativistskoj teorii anizotropnoj nieodnorodnoj vselennoj, in: Trudi shestovo soveshanija po voprosam kosmologii, p. 144, Acad. Publ. USSR, 1959,Google Scholar
  8. [8]
    Zelmanov, A. L., Dokl. Akad. USSR 107, 815 (1956)MathSciNetGoogle Scholar
  9. [9a]
    Perjés, Z., Int. J. Theor. Phys. 10, 217 (1974),CrossRefGoogle Scholar
  10. [9b]
    Perjés, Z., Commun. Math. Phys. 12, 275 (1969)ADSCrossRefGoogle Scholar
  11. [10]
    Perjés, Z., J. Math. Phys. 11, 3383 (1970)ADSCrossRefGoogle Scholar
  12. [11]
    Penrose, R.: Structure of space-time, in: Batteile Rencontres, Eds. DeWitt, C. M. and Wheeler, J. A. (Benjamin, 1968)Google Scholar
  13. [12]
    Carter, B. and Quintana, H., Proc. Roy. Soc. 331, 57 (1972)MathSciNetADSMATHCrossRefGoogle Scholar
  14. [13]
    Ernst, F. J., Phys. Rev. 167, 1175 (1968)ADSCrossRefGoogle Scholar
  15. [14]
    Pirani, F. A. E., in: Lectures in General Relativity Brandeis Summer Institute in Theoretical Physics (Prentice-Hall, Englewood Cliffs, N. J. 1964)Google Scholar
  16. [15]
    Perjés, Z., unpublished (1971)Google Scholar
  17. [16]
    Sen, A., J. Math. Phys. 22, 1718 (1981)Google Scholar
  18. [17]
    Isham, C., in: Quantum Gravity, Eds. Isham, C., Penrose, R. and Sciama, D., Oxford University Press, 1984Google Scholar
  19. [18]
    Ashtekar, A., Phys. Rev. D36, 1587 (1987)MathSciNetADSGoogle Scholar
  20. [19]
    Perjés, Z., Dissertation, Magyar Fizikai Folyóirat XXIV, 173 (1976)Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Zoltán Perjés
    • 1
  1. 1.Central Research Institute for PhysicsBudapest 114Hungary

Personalised recommendations