Current Algebra and Extended 2D Gravity with Higher Spin Gauge Field

  • Yutaka Matsuo
Part of the NATO ASI Series book series (NSSB, volume 245)


We discuss quantum field theory of extended two dimensional gravity associated with Zamolodchikov’s W-algebra. We introduce new type of gauge symmetry whose gauge potentials are higher rank symmetric tensor fields. In the limit that those gauge potentials are infinitesimaly small, we write down the invariant action for matter fields and extended gravity. By investigating the gauge symmetry in the light cone gauge, we find that induced quantum gravity associated with this symmetry is described by simply laced affine Lie algebras. Our result is a natural generalization of the result of Polyakov’s quantum gravity.


Gauge Transformation Gauge Symmetry Energy Momentum Tensor Current Algebra Gauge Potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Polyakov, A.M., Physics Letters 103B (1981) 207.MathSciNetADSGoogle Scholar
  2. [2]
    Polyakov, A.M., Modern Physics Letters A2 (1987) 893.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Knizhnik, V.M., Polyakov, A.M. and Zamolodchiov, A.B., Modern Physics Letters A3 (1988) 819.ADSCrossRefGoogle Scholar
  4. [4]
    Kazakov, V.A., Physics Letter 150B (1985) 282;MathSciNetADSGoogle Scholar
  5. [4a]
    David, F., Nuclear Physics B257 (1985) 543;ADSGoogle Scholar
  6. [4b]
    Kazakov, V.A., Physics Letter A119 (1986) 140.MathSciNetADSCrossRefGoogle Scholar
  7. [5]
    Bilal, A. and Gervais, J.-L., preprint LPTENS 88/36 (1988).Google Scholar
  8. [6]
    Zamolodchikov, A.B., Theor.Math.Phys. 99 (1985) 108;Google Scholar
  9. [6a]
    Zamolodchikov, A.B. and Fateev, V.A., Nuclear Physics B280 (1987) 644;MathSciNetADSGoogle Scholar
  10. [6b]
    Fateev, V.A. and Lykyanov, S.L., Int.J.Mod.Phys. A3 (1988) 507;MathSciNetADSGoogle Scholar
  11. [6c]
    Lukyanov, S.L. and Fateev, V.A., Kiev preprints ITP-88–74P, 75P, 6P;Google Scholar
  12. [6d]
    Bilal, A. and Gervais, J.-L., Physics Letters 206B (1988) 412.MathSciNetADSGoogle Scholar
  13. [7]
    Bershadsky, M. and Ooguri, H., Princeton preprint IASSN-HEP-89/09 (1989);Google Scholar
  14. [7a]
    Alekseev, A. and Shatashivili, S., Nuclear Physics (1989);Google Scholar
  15. [7b]
    Polyakov, A.M., MIT preprint (1989).Google Scholar
  16. [8]
    Drinfeld, V.G. and Sokolov, V.V., J.Sov.Math. 30 (1985) 1975;CrossRefGoogle Scholar
  17. see also Jimbo, M. and Miwa, T., Publ.RIMS. Kyoto Univ. 19 (1983) 943.MathSciNetMATHCrossRefGoogle Scholar
  18. [9]
    Gervais, J.-L., Physics Letters 160B (1985) 277;MathSciNetADSGoogle Scholar
  19. [9a]
    Yamagishi,K., Physics Letters 205B (1988) 406;MathSciNetGoogle Scholar
  20. [9b]
    Mathiew, P., Physics Letters 208B (1988) 101;ADSGoogle Scholar
  21. [9c]
    Bakas, I., Physics Letters 213B (1988) 313.MathSciNetADSGoogle Scholar
  22. [10]
    Matsuo, Y., Physics Letters 227B (1989) 209.MathSciNetADSGoogle Scholar
  23. [11]
    Polyakov, A.M., “Gauge Field and Strings” (1988)Google Scholar
  24. [12]
    Park, H., preprint (1989).Google Scholar
  25. [13]
    Kostant, V., Am.J.Math. 131 (1959) 973.MathSciNetCrossRefGoogle Scholar
  26. [14]
    Kac, V. and Wakimoto, M., Proc.Natl.Acad.Sci.USA 85 Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Yutaka Matsuo
    • 1
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations