Advertisement

Gravity and Lorentz Breakdown in Higher-Dimensional Theories and Strings

  • V. Alan Kostelecký
  • Stuart Samuel
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

The gravitational phenomenology of theories compactified from higher dimensions is investigated. Emphasis is placed on the consequences in string theory of tensor-induced spontaneous breaking of the higher-dimensional Lorentz symmetry. The role played by this mechanism in causing a gravitational version of the Higgs effect and in compactification is studied. The phenomenology of compactified theories with massless modes is compared with experiment via an examination of non-leading but observable gravitational effects arising in the presence of a localized matter distribution. Further constraints from known cosmological features of the universe are presented. The results significantly constrain many theories involving extra dimensions in their perturbative regime. A mechanism is needed that leaves massless the physical spacetime components of the higher-dimensional metric while generating masses for other components. Some suggestions for overcoming this metric-mass problem are made.

Keywords

Spontaneous Breaking Massless Mode Newton Gravity Nonabelian Gauge Theory String Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kaluza, Sitzungsber. Preuss Akad. Wiss, Phys. Math. K1, 966 (1921).Google Scholar
  2. 2.
    O. Klein, Z. Phys. 37, 875 (1926);ADSGoogle Scholar
  3. 2a.
    O. Klein, Nature (London) 118, 516 (1926).ADSCrossRefGoogle Scholar
  4. 3.
    See, for example, T. Appelquist, A. Chodos and P.G.O. Freund, eds., Modern Kaluza-Klein Theories (Addison Wesley, Menlo Park, 1987).MATHGoogle Scholar
  5. 4.
    See, for example, M.J. Duff, B.E.W. Nilsson and C.N. Pope, Phys. Rep. 130, 1 (1986) and references therein.MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    See, for example, M.B. Green, J.H. Schwarz and E. Witten, Swperstring Theory, Vols. I and II (Cambridge University Press, Cambridge, 1987).Google Scholar
  7. 6.
    V.A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683 (1989).ADSCrossRefGoogle Scholar
  8. 7.
    E. Witten, Nucl. Phys. B268, 253 (1986).MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    W. Siegel, Phys. Lett. B 142, 276 (1984);MathSciNetADSCrossRefGoogle Scholar
  10. 8a.
    W. Siegel, Phys. Lett. B 151, 391, 396 (1985).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    V.A. Kostelecky and S. Samuel, Phys. Rev. Lett. 63, 224 (1989).ADSCrossRefGoogle Scholar
  12. 10.
    V.A. Kostelecky and S. Samuel, Phys. Rev. D, in press.Google Scholar
  13. 11.
    D. Tischler, Topology 9, 153 (1970).MathSciNetMATHCrossRefGoogle Scholar
  14. 12.
    A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1922).Google Scholar
  15. 13.
    H.P. Robertson, in A.J. Deutsch and W. B. Klemperer, eds., Space Age Astronomy (Academic Press, New York, 1962).Google Scholar
  16. 14.
    I.I. Shapiro, C.C. Counselman and R.W. King, Phys. Rev. Lett. 36, 555 (1976).ADSCrossRefGoogle Scholar
  17. 15.
    R.D. Reasenberg, I.I. Shapiro, P.E. MacNeil, R.B. Goldstein, J.C. Breidenthal, J.P. Brenkle, D.L. Cain, T.M. Kaufman, T.A. Komarek and A.I. Zygielbaum, Ap. J. 234, L219 (1979).ADSCrossRefGoogle Scholar
  18. 16.
    E. Witten, in R. Jackiw, N.N. Khuri, S. Weinberg and E. Witten, eds., Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics (MIT, Cambridge, 1985).Google Scholar
  19. 17.
    R.W. Hellings, P.J. Adams, J.D. Andersen, M.S. Keesey, E.L. Lau, E.M. Standish, V.M. Canuto and I. Goldman, Phys. Rev. Lett. 51, 1609 (1983).ADSCrossRefGoogle Scholar
  20. 18.
    See, for example, L. Z. Fang, T. Kiang, F. H. Cheng and F. X. Hu, Q. Jl. R. Astr. Soc. 23, 363 (1982) and references therein.ADSGoogle Scholar
  21. 19.
    H. R. Butcher, Nature 328, 127 (1987); 330, 704 (1987).Google Scholar
  22. 20.
    A. Sandage, Ap. J. 252, 553 (1982);ADSCrossRefGoogle Scholar
  23. 20.
    A. Sandage, Ap. J. 331, 583 (1988).ADSCrossRefGoogle Scholar
  24. 21.
    K. Janes and P. Demarque, Ap. J. 264, 206 (1983).ADSCrossRefGoogle Scholar
  25. 22.
    D. A. VandenBerg, Ap. J. Suppl. 51, 29 (1983).ADSCrossRefGoogle Scholar
  26. 23.
    F.-K. Thielemann, J. Metzinger and H. V. Klapdor, Z. Phys. A 309, 301 (1983);ADSCrossRefGoogle Scholar
  27. 23.
    F.-K. Thielemann, J. Metzinger and H. V. Klapdor, Astron. Astrophys. 123, 162 (1983).ADSGoogle Scholar
  28. 24.
    R. G. Ostic, R. D. Russell and D. H. Reynolds, Nature 199, 1150 (1963).ADSCrossRefGoogle Scholar
  29. 25.
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258, 46 (1985).MathSciNetADSCrossRefGoogle Scholar
  30. 26.
    M. Dine and N. Seiberg, Phys. Lett. 162B, 299 (1985).MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • V. Alan Kostelecký
    • 1
  • Stuart Samuel
    • 1
  1. 1.Department of PhysicsIndiana UniversityBloomingtonUSA

Personalised recommendations