Advertisement

Nonlinear Differential Equations in Physics and Their Geometrical Integrability Properties

  • Ling-Lie Chau
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

The attempt of this line of research is to try to treat Yang-Mills, and gravitational fields as nonlinear systems, and try to see how much they possess the geometrical integrability properties that have been the guiding force in many two-dimension nonlinear systems. Though the study so far has been quite formal and mathematical, the ultimate goal we have in mind is for particle physics: to solve the full Yang Mills and gravitational fields, and to formulate new ways to quantize the fields.

Keywords

Supergravity Theory Conformal Supergravity Backlund Transformation Ricatti Equation Generalize Covariant Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chau, L.-L., “Linear Systems and Conservation Laws of Gravitational Fields in Four Plus Extended Superspace”, Phys. Lett. B202 (1988) 238.MathSciNetADSGoogle Scholar
  2. 2.
    Chau, L.-L. and Lim, C.-S., Phys. Rev. Lett. 56, 294 (1986).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Chau, L.-L. and Milewski, B., “Light-Like Integrability and Supergravity Equations of Motion in D = 10, N = 1 Superspace”, UCD-87–05-R*; and Chau L.-L. and Lim, C.-S. to appear in Mod. Phys A. 1989.Google Scholar
  4. 4.
    Chau, L.L. and B. Milewski “Linear Systems and Conservation Laws in D=10, N=1 Supergravity”, to appear in Phys. Lett.Google Scholar
  5. 5.
    For general discussions on such equations, see, for example, G.L. Lamb, Jr., “Elements of Soliton Theory” (Wiley, New York, 1980);MATHGoogle Scholar
  6. 5a.
    M.J. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transform” (SIAM, Philadelphia, 1981);MATHCrossRefGoogle Scholar
  7. 5b.
    F. Calogero and A. Degasperis, “Spectral Transform and Solitons, I” (North-Holland, Amsterdam, 1982).Google Scholar
  8. 6.
    Faddeev, L.D. and N. Yu. Reshetikhin, Annals of Physics 167 (1986) 227;MathSciNetADSCrossRefGoogle Scholar
  9. 6a.
    E.K. Sklyanin, L.A. Takhtadzhyan, and L.D. Faddeev, Teoreticheskaya i Matematcheskaya Fiziks, Vol. 40 (1979) 194.Google Scholar
  10. 7.
    Chau, L.-L., in Proceedings of Nonlinear Phenomena, Mexico, 1982, Lecture Notes in Physics 189 (Springer-Verlag, New York, 1983).Google Scholar
  11. 8.
    Novikov, S., S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov, “Theory of Solitons: The Inverse Scattering Method” (Consultants Bureau, New York, 1984).Google Scholar
  12. 9.
    Yang, C.N., Phys. Rev. Lett. 38 (1977) 1377.MathSciNetADSCrossRefGoogle Scholar
  13. 9a.
    S. Ward, Phys. Lett. 61A (1977) 81.ADSGoogle Scholar
  14. 9b.
    Y. Brihaye, D.B. Fairlie, J. Nuyts, R.F. Yates, JMP 19 (1978) 2528.MathSciNetADSCrossRefGoogle Scholar
  15. 10.
    Atiyah, M.F. and R.S. Ward, Commun. Math. Phys. 55 (1977) 117.MathSciNetADSMATHCrossRefGoogle Scholar
  16. 11.
    Atiyah, M.F., V.G. Drinfeld, N.J. Hitchin and Yu.I. Manin, Phys. Lett. A 65 (1978) 185.MathSciNetADSMATHCrossRefGoogle Scholar
  17. 12.
    Corrigan, E.F., D.B. Fairlie, R.G. Yates and P. Goddard, Commun. Math. Phys. 58 (1978) 223.MathSciNetADSCrossRefGoogle Scholar
  18. 13.
    Salam, A. and J. Strathdee, Phys. Lett. 51B. 353 (1974).MathSciNetADSGoogle Scholar
  19. 13a.
    For review see J. Scherk, in Recent Development in Gravitation (Plenum, New York, 1979);Google Scholar
  20. 13b.
    B. Zumino, in Proceedings of the NATO Advanced Study Institute on Recent Developments in Gravity, Cargése, 1978 (Plenum, New York, 1979), p. 405;Google Scholar
  21. 13c.
    J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton Univ. Press, Princeton, N.J., 1983).MATHGoogle Scholar
  22. 14.
    Witten, E., Phys. Lett. 77B, 394 (1978);ADSGoogle Scholar
  23. 14a.
    M. Sohnuis, Nucl. Phys. B136, 461 (1978).ADSCrossRefGoogle Scholar
  24. 15.
    Volovich, I.V., Phys. Lett. 129B, 429 (1983).MathSciNetADSGoogle Scholar
  25. 16.
    Devchan, C., Nucl. Phys. B238, 333 (1984).ADSCrossRefGoogle Scholar
  26. 17.
    Harnard, J., Hurtubise, J., and Shnider, S., Supersymmetric Yang Mills Equations and Supertwistors, Annals of Physics (to appear).Google Scholar
  27. 18.
    Chau, L.-L., Ge, M.-L., Popowicz, Z., Phys. Rev. Lett. 52, 1940 (1984);MathSciNetADSCrossRefGoogle Scholar
  28. 18a.
    Chau, L.-L., Ge, M.-L., Lim, C.-S., Phys. Rev. D33. 1056 (1986). “Vertex Operators in Mathematics and Physics”, Proceedings of the 1983 Berkeley Workshop, Eds. Lepoulsky, Mandelstam, Singer.MathSciNetADSGoogle Scholar
  29. 19.
    Chau, L.-L. and Milewski, B., Phys. Lett. 198 (1987) 356.MathSciNetGoogle Scholar
  30. 20.
    Chau, L.-L. and Chinea, F.J., Lett, in Math. Phys. 12, 189 (1986);MathSciNetADSMATHGoogle Scholar
  31. 20a.
    Chau, L.-L., Yen, H.-C., Chen, H.-H., Chinea, F.J., Lee, C-R., Shaw, J.-C, Mod. Phys. Lett. 1, 285 (1986).MathSciNetADSCrossRefGoogle Scholar
  32. 21.
    Chau, L.-L. and Yen, H.-C., J. Math. Phys. 28, 1167 (1986).MathSciNetADSCrossRefGoogle Scholar
  33. 22.
    Chau, L.L., J.C. Shaw, and H.C. Yen, Int. J. of Mod. Phys. 4 (1989) 2715.MathSciNetADSMATHCrossRefGoogle Scholar
  34. 23.
    Chau, L.-L., Chou, K.-C., Hou, B.-Y., Song, X.-C, Phys. Rev. 34D. 1814 (1986).MathSciNetADSGoogle Scholar
  35. 24.
    Chau, L.-L. and Yen, H.C., Phys. Lett. B 177, 368 (1986).MathSciNetADSCrossRefGoogle Scholar
  36. 25.
    Chau, L.-L., Hou, B.-Y., Phys. Lett. 145B, 347 (1984);MathSciNetADSGoogle Scholar
  37. 25a.
    Chau, L.-L., Hou, B.-Y., Song, X.-C., Phys. Lett. 151B, 421 (1985).MathSciNetADSGoogle Scholar
  38. 26.
    Chau, L.-L., Ge, M.-L., “Finite Riemann-Hilbert Transformation and A Unifying Derivation of Bäcklund Transformation”, UCD-87- (1987).Google Scholar
  39. 27.
    Chau, L.-L., Ge, M.-L., Yen H.-C., J. of Math. Phys. 30 (1989) 166.ADSMATHCrossRefGoogle Scholar
  40. 28.
    For a recent review on the field: see Chau, L.L., “Geometrical Integrability and Equations of Motion in Physics: A Unifying View,” talk given at the Workshop held at Nankai Institute of Mathematics, Nankai University Tianjin, China.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ling-Lie Chau
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations