Some Results on Line Bundles over Susy-Curves

  • C. Bartocci
  • U. Bruzzo
  • D. Hernández Ruipérez
Part of the NATO ASI Series book series (NSSB, volume 245)


It is usually thought that any approach to superstrings à la Polyakov should involve a suitable generalization of the notion of Riemann surface.


Riemann Surface Line Bundle Chern Class Compact Riemann Surface Holomorphic Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedan, D., Notes on string theory and two conformai field theory, in: Green, M., and Gross, D., “Unified string theories,” World-Scientific, Singapore (1986).Google Scholar
  2. 2.
    Batchelor, M., and Bryant, P., Graded Riemann surfaces, Commun. Math. Phys., 114:243 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    LeBrun, C., and Rothstein, M., Moduli of super Riemann surfaces, Commun. Math. Phys., 117:159 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Manin, Yu.I., Critical dimensions of the string theories and the dualizing sheaf of the moduli space of (super) curves, Funct. Anal. Appl., 20:244 (1987).CrossRefGoogle Scholar
  5. 5.
    Gunning, R.C., “Lectures on Riemann surfaces,” Princeton Univ. Press, Princeton (1966).zbMATHGoogle Scholar
  6. 6.
    Băniča, C., and St̆;anăşlă, O., “Méthodes algébriques dans la théorie globale des espaces complexes. II,” Gauthier-Villars, Paris (1977)Google Scholar
  7. 7.
    Grothendieck, A., 1962, “Fondements de la géometrie algébrique,” Séminaire Bourbaki 1957–62, Paris (1962).zbMATHGoogle Scholar
  8. 8.
    Manin, Yu.I., “Gauge field theory and complex geometry,” Springer-Verlag, Berlin (1988).zbMATHGoogle Scholar
  9. 9.
    Bartocci, C., Bruzzo, U., and Hernández Ruipérez, D., forthcoming paper.Google Scholar
  10. 10.
    Hernández Ruipérez, D., and Muñoz Masqué, J., Construction intrinsèque du faisceau de Berezin, C. R. Acad. Sc. Paris, 301:915 (1985).zbMATHGoogle Scholar
  11. 11.
    Penkov, LB., D-modules on supermanifolds, Invent Math., 71:501 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Giddings, S.B., and Nelson, P., Line bundles on super Riemann surfaces, Commun. Math. Phys., 118:289 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. Bartocci
    • 1
  • U. Bruzzo
    • 1
  • D. Hernández Ruipérez
    • 2
  1. 1.Dipartimento di MatematicaUniversità di GenovaGenovaItaly
  2. 2.Departamento de MatemáticasUniversidad de SalamancaSalamancaSpain

Personalised recommendations