Supermanifold, Symplectic Structure and Geometric Quantization of BRST Systems

  • Shao-Ming Fei
  • Han-Ying Guo
  • Yue Yu
Part of the NATO ASI Series book series (NSSB, volume 245)


We introduce a generic, systematical approach to the supergeometric BRST quantization proposed by the authors recently. We investigate the superversions of the symplectic geometry and of the geometric quantization of constrainted system via BRST by means of supermanifold theory with ghost variables. We show the applications to the BRST systems of finite dimensions as well as to the bosonic strings. We also interpret the BRST anomaly in bosonic strings as curvature in certain sense.


Poisson Bracket Symplectic Form Symplectic Structure Quantum Operator Bosonic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Yu and H.Y. Guo, Phys. Lett. 216B (1989) 68.MathSciNetADSGoogle Scholar
  2. [2]
    Y. Yu, Phys. Lett. 216B (1989) 75.ADSGoogle Scholar
  3. [3]
    A. Niemi, CERN preprint (1988).Google Scholar
  4. [4]
    W. Chen, W.L. Shen and Y. Yu, Phys. Rev. D39 (1989) 1210.MathSciNetADSGoogle Scholar
  5. [5]
    Y. Yu and S.M. Fei, BIHEP-TH-88–40, to appear in Z.Phys.C.Google Scholar
  6. [6]
    S.M. Fei, H.Y. Guo and Y. Yu, BIHEP-TH-89–15, AS-ITP-89–08, ibid.Google Scholar
  7. [7]
    B. DeWitt, Supermanifold (Cambridge University, Cambridge, London New York New Rochelle 1984).Google Scholar
  8. [8a]
    J. Sniatychi, Geometric Quantization and Quantum Mechanics (Springer-Verlag, New York, 1980).CrossRefGoogle Scholar
  9. [8b]
    N. Woodhouse, Geometric Quantization (Clarendon Press, 1980).MATHGoogle Scholar
  10. [9]
    M. Kato and K. Ogawa, Nucl. Phys. B212 (1983) 443.ADSCrossRefGoogle Scholar
  11. [10]
    M. Bowick and S.G. Rajeev, Nucl. Phys. B293 (1987) 348 and references therein.MathSciNetADSCrossRefGoogle Scholar
  12. [11]
    See, for example, papers by D.A. Leites and by R.O. Wells in this Proceedings.Google Scholar
  13. [12a]
    E. Witten, Commun. Math. Phys. 117 (1988) 353MathSciNetADSMATHCrossRefGoogle Scholar
  14. [12b]
    E. Witten, Commun. Math. Phys. 118 (1988) 411MathSciNetADSMATHCrossRefGoogle Scholar
  15. [12c]
    E. Witten, Phys. Lett. 206B (1988) 601.MathSciNetADSGoogle Scholar
  16. [13a]
    T. Kumura, Prog. Theor. Phys. 64 (1980) 625Google Scholar
  17. [13b]
    T. Kumura, Prog. Theor. Phys. 65 (1981) 1.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Shao-Ming Fei
    • 1
  • Han-Ying Guo
    • 2
    • 3
  • Yue Yu
    • 2
    • 4
  1. 1.Physics DepartmentZhejiang UniversityHargzhouChina
  2. 2.CCAST (World Lab.)Singapore
  3. 3.Institute of Theoretical Physics, Academia SinicaBeijingChina
  4. 4.Institute of High Energy Physics, Academia SinicaBeijingChina

Personalised recommendations