Knots in Physics

  • Manfred U. Werner
Part of the NATO ASI Series book series (NSSB, volume 245)


In recent years the interest in knot theory [1] increased drastically. This increase is mainly due to the discovery of new polynomial invariants [2] and their connections to various branches of theoretical and mathematical physics. We begin by scetching some basic facts of knot theory needed to understand these connections. Then we give a short review of theories in which knot theoretical structures appear and outline common features. These theories include a.o. quantum inverse scattering theory, conformai field theory and solvable models in statistical mechanics. We end this work suggesting an extension of knot theoretical aspects to higher genus Riemannian surfaces while employing Krichever-Novikov algebras.


Quantum Group Braid Group Conformal Field Theory Mapping Class Group Jones Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1a]
    L.H. Kauffman, On Knots. Princeton University Press, 1987MATHGoogle Scholar
  2. [1b]
    G. Burde, H. Zieschang, Knots, de Gruyter, 1985MATHGoogle Scholar
  3. [2a]
    V.F.R. Jones, Bull. AMS 12, 103 (1985)MATHCrossRefGoogle Scholar
  4. [2b]
    HOMFLY, Bull. AMS 12, 239 (1985)CrossRefGoogle Scholar
  5. [2c]
    Przytycki, Traczyk, Kobe J. Math. 4, 115 (1987)MathSciNetMATHGoogle Scholar
  6. [2d]
    L.H.Kauffman, An Invariant of Regular Isotopy, preprint, to appear in: Trans. of the AMSGoogle Scholar
  7. [3a]
    J.W. Alexander, Proc.Nat.Acad. 9, 93 (1923);ADSCrossRefGoogle Scholar
  8. [3b]
    J.W. Alexander Trans. AMS 30, 275 (1928)MATHCrossRefGoogle Scholar
  9. [4]
    J.H.Conway, An enumeration of knots and links and some of their related properties, in: Computational problems in Abstract Algebra, Proc. Conf. Oxford 1967, Ed. J.LeechGoogle Scholar
  10. [5a]
    R.D.Brandt, W.B.R.Lickorish, K.C.Millet, Invent Math. 84, 563 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  11. [5b]
    C.F.Ho, Abstracts of the AMS 6, 300 (1985)Google Scholar
  12. [6]
    A.B.Zamolodchikov, Comm.Math.Phys. 69, 165 (1979)MathSciNetADSCrossRefGoogle Scholar
  13. [7]
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics. Academic Press, 1982MATHGoogle Scholar
  14. [7a]
    R.J. Baxter, Phys.Rev.Lett. 26, 832; (1971);ADSCrossRefGoogle Scholar
  15. [7b]
    R.J. Baxter, Phys.Rev.Lett. 26, 834 (1971);ADSCrossRefGoogle Scholar
  16. [7c]
    R.J. Baxter Ann.Phys. 70, 193 (1972)MathSciNetADSMATHCrossRefGoogle Scholar
  17. [7d]
    R.J. Baxter Ann.Phys. 70, 323 (1972)MathSciNetADSCrossRefGoogle Scholar
  18. [8a]
    L.D.Faddeev, L.A.Takhtajan, Hamiltonian Methods in the Theory ofSolitons. Springer, 1987MATHCrossRefGoogle Scholar
  19. [8b]
    S.Novikov, Theory of Solitons: The Inverse Scattering Method,Consultants Bureau (Plenum Press), 1984Google Scholar
  20. [8c]
    L.D.Faddeev, Integrable Models in 1+1 — Dimensional Quantum Field Theory, in: Les Houches 1982, Elsevier 1984Google Scholar
  21. [8d]
    L.D.Faddeev, Sov.Sci.Rev.Math.Phys. C1, 107 (1980)Google Scholar
  22. [8e]
    E.K.Sklyanin, The Quantum Version of the Inverse Scattering Method, J.Sov.Math. 19, 1546 (1982)MATHCrossRefGoogle Scholar
  23. [8f]
    P.P.Kulish, E.K.Sklyanin, Quantum Spectral Transform Method. Recent Developments, in: Springer Lecture Notes in Physics 151Google Scholar
  24. [9a]
    P.P.Kulish, E.K.Sklyanin, Solutions of the Yang-Baxter Equation, J.Sov.Math. 19, 1596 (1982)MATHCrossRefGoogle Scholar
  25. [9b]
    P.P.Kulish, N.Yu.Reshetikhin, E.K.Sklyanin, Lett.Math.Phys. 5, 393 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  26. [9c]
    M.Jimbo, Comm.Math.Phys. 102, 537 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  27. [10]
    V.G.Turaev, Invent.Math 92, 527 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  28. [11]
    V.G.Drinfeld, Proc.Int.Cong.Math., Berkeley 1986Google Scholar
  29. [12]
    P.P.Kulish, N.Yu.Reshetikhin, J.Sov.Math. 23, 2435 (1983)CrossRefGoogle Scholar
  30. [13a]
    M.Jimbo, Lett.Math.Phys. 10, 63 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  31. [13b]
    M.Jimbo, Lett.Math.Phys. 11, 247 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  32. [13c]
    V.G.Drinfeld, Sov.Math.Dokl. 32, 254 (1985)Google Scholar
  33. [14]
    N.Yu.Reshetikhin, E-4–87, E-17–87, LOMI preprints, Steklov Inst. A.N.Kirillov, N.Yu.Reshetikhin, E-9–88, LOMI preprint, Steklov Inst.Google Scholar
  34. [15a]
    G.Moore, N. Reshetikhin, A Comment on Quantum Group Symmetry in Conformai Field Theory, Princeton preprint IASSNS-HEP-89/18;Google Scholar
  35. [15b]
    L.Alvarez-Gaume, C.Gomez, G.Sierra, Quantum Group Interpretation of Some Conformai Field Theories, CERN-TH 5267/88Google Scholar
  36. [16]
    L.Alvarez-Gaume, C.Gomez, G.Sierra, Hidden Quantum Symmetries in Rational Conformai Field Theories, preprint CERN-TH 5129/88Google Scholar
  37. [17]
    G.Moore, N.Seiberg, Polynomial Equations for Rational Conformal Field Theories, Princeton preprint IASSNS-HEP-88/18; Classical and Quantum Conformai Field Theory, Princeton preprint IASSNS-HEP 88/39Google Scholar
  38. [17a]
    E. Witten, Comm.Math.Phys. 92, 455 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  39. [18]
    E.Witten, Quantum Field Theory and the Jones Polynomial, Princeton preprint IASSNS-HEP-88/33; Gauge Theories and Integrable Lattice Models, Princeton preprint IASSNS-HEP-89/11Google Scholar
  40. [19]
    P.Braam, First steps in Jones-Witten theory, preprint, Univ. of UtahGoogle Scholar
  41. [20]
    G.Moore, N.Seiberg, Taming the Conformai Zoo, Princeton preprint IASSNS-HEP- 89/6Google Scholar
  42. [21]
    G.T.Horowitz, Exactly Soluble Diffeomorphism Invariant Theories, preprint NSF -ITP - 88–178Google Scholar
  43. [22a]
    K.Fredenhagen, K.H.Rehren, B.Schroer, Superselection Sectors with Braid Group Statistics and Exchange Algebras, I: General Theory, FU Berlin preprint, September 1988 (and references therein);Google Scholar
  44. [22b]
    J.Fröhlich, Statistics of Fields, the Yang-Baxter Equation and the Theory of Knots and Links, preprint, Cargese 1987 Conf.Google Scholar
  45. [23]
    C.Rovelli, L.Smolin, Phys. Rev. Lett. 61 1155 (1988)MathSciNetADSCrossRefGoogle Scholar
  46. [24a]
    I.M. Krichever, S.P. Novikov, Funkts.Anal.Prilozhen. 21(2), 46; (1987)MathSciNetGoogle Scholar
  47. [24b]
    I.M. Krichever, S.P. Novikov, Funkts.Anal.Prilozhen. 21(4), 47 (1987)MathSciNetGoogle Scholar
  48. [25a]
    J.S.Birman, Braids. Links, and Mapping Class Groups. Annals of Math. Studies 82, Princeton University Press, 1974;Google Scholar
  49. [25b]
    J.S.Birman Comm. Pure and Appl. Math. 22, 41; (1969)MathSciNetMATHCrossRefGoogle Scholar
  50. [25c]
    J.S.Birman Comm. Pure and Appl. Math. 22, 213 (1969)MathSciNetMATHCrossRefGoogle Scholar
  51. [26]
    M.Schlichenmaier, Krichever-Novikov Algebras for More Than Two Points, Manusk.Fak.Math.u.Inf. Univ. Mannheim 97–1989, preprint R.Dick, Krichever-Novikov-like Bases on Punctured Riemann —Surfaces, DESY preprint 89 – 059, May 1989Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Manfred U. Werner
    • 1
  1. 1.Fakultät f. Mathematik und Informatik, Lehrstuhl IUniversität MannheimMannheimFed. Rep. of Germany

Personalised recommendations