Moduli Spaces and Topological Quantum Field Theories

  • Jacob Sonnenschein
Part of the NATO ASI Series book series (NSSB, volume 245)


Generally covariant field theories have observables which are metric independent. Hence they are global invariants. Recently, a new class of such theories, the so called topological quantum field theories (TQFTs’), were introduced by E.Witten. Originally they were affiliated with Yang-Mills instantons (TYM), [1] sigma models (TSM)[2], and gravity (TG)[3]. Later on they enveloped other domains of physical systems [5-8]. The main question is obviously whether the TQFT’s probe some physical phenomena or are they merely mathematical tools to study topological properties of certain bundles? The answer to this question is two-fold: (i) The observables of the TQFT span the cohomology ring on certain moduli spaces. These moduli spaces may be intimately related to physics. An example familiar to string theorists is the moduli space of Riemann surfaces. Another example is the moduli space of instantons. (ii) The possibility that the TQFT’s describe a generally covariant phase of some physical systems [1,8]. In this work we follow the first direction.


Modulus Space Zero Mode Cohomology Ring Exterior Derivative World Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, Comm. Math. Phys. 117 (1988) 353.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    E. Witten, Comm. Math. Phys. 118 (1988) 411.MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    E. Witten, Phys. Lett. 206B (1988) 601.MathSciNetADSGoogle Scholar
  4. 4.
    D. Montano and J. Sonnenschein, Nucl. Phys. B313 (1989) 258.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J. Sonnenschein, SLAC preprint SLAC-PUB-4970, April 1989.Google Scholar
  6. 6a.
    J.M.F. Labastida, M. Pernici Phys. Lett. 213B (1988) 319;MathSciNetADSGoogle Scholar
  7. 6b.
    J. M. F. Labastida, M. Pernici and E. Witten Nucl. Phys. B310 (1988) 611;MathSciNetADSCrossRefGoogle Scholar
  8. 6c.
    L. Baulieu and B. Grossman Phys. Lett. 212B (1988) 351,MathSciNetADSGoogle Scholar
  9. 6d.
    L. Baulieu and B. Grossman Phys. Lett. 214B (1988) 223;MathSciNetADSGoogle Scholar
  10. 6e.
    J. Yamron, Phys. Lett. 213B (1988) 325; D. Birmingham, M. Rakowski and G. Thompson, “supersymmetric instantons and topological quantum field theory” Print-88–0557 (ICTP,Trieste), May 1988. 8pp;MathSciNetADSGoogle Scholar
  11. 6f.
    D. Birmingham, M. Rakowski and G. Thompson, Phys. Lett. 212B (1988) 187: F.A. Schaposnik, G. Thompson “topological field theory and two-dimensional abelian Higgs instantons”, PAR-LPTHE-88–51, Dec 1988; A. Iwazaki, Topological CP n- 1 Model and Topological Quantum Mechanics, Nishogukusha Univ. # NISHO-2 1988;MathSciNetADSGoogle Scholar
  12. 6g.
    A. Karlhede and M. Roček, Phys. Lett. 212B (1988) 51, “Topological Quantum Field Theories in Arbitrary Dimensions”, SUNY at Stony Brook preprint # ITP-SB-89–04 (January 1989); R. C. Myers and V. Periwal, “New Symmetries in Topological Field Theories”, Santa Barbara preprint # NSF-ITP-89–16.ADSGoogle Scholar
  13. 7.
    R. Brooks, “Topological Invariants and a Gauge Theory of the Super-Poincaré Algebra in Three Dimensions”, Nuci Phys. B320 (1989) 440.MathSciNetADSCrossRefGoogle Scholar
  14. 8.
    R.Brooks “The spectrum of topological quantum field theories on N-manifolds”, SLAC-PUB-4901, Feb 1989 Nuci Phys. B in press.Google Scholar
  15. 9.
    L. Baulieu and I. M. Singer, “Topological Yang-Mills Symmetry”, LPTHE preprint # LPTHE-88/18, talk presented at the Annecy meeting on Conformai Field Theory and Related Topics, Annecy, France (March 1988)Google Scholar
  16. 10.
    J. Labastida, and M. Pernici Phys. Lett 212B (1988) 56.MathSciNetADSGoogle Scholar
  17. 11.
    R. Brooks, D. Montano and J. Sonnenschein, Phys. Lett. 214B (1988) 91.MathSciNetADSGoogle Scholar
  18. 12.
    D. Montano and J. Sonnenschein, “The Topology of moduli space and quantum field theory”, SLAC preprint # SLAC-PUB-4760 (October 1988); Nucl. Phys. B, in pressGoogle Scholar
  19. 13.
    S. Ouvry, R. Stora and P. Van-Baal CERN preprint CERN-TH-5224/88 Nov. 1988.Google Scholar
  20. 14.
    R.Myers “Gauge fixing Topological Yang-Mills” Santa-NSF-ITP-89–45Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jacob Sonnenschein
    • 1
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations