Observables in Topological Yang-Mills Theory and the Gribov Problem

  • Hiroaki Kanno
Part of the NATO ASI Series book series (NSSB, volume 245)


Topological Yang-Mills theory (TYMT) is one of topological quantum field theories, which were proposed and developed by Witten1. Topological invariants obtained from TYMT are Donaldson polynomials2. TYMT has BRST symmetry and observables are defined to be BRST cohomology classes. We can prove that correlation functions of observables are independent of a metric on the underlying four dimensional space-time and, therefore, topological invariants. Witten identified these correlation functions with Donaldson polynomials. Thus, Donaldson polynomials appear as BRST cohomology class (observables) of TYMT and we have a path integral representation of Donaldson polynomials.


Gauge Field Chern Class Exterior Derivative Ghost Number BRST Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, Commun. Math. Phys. 117: 353 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    S. Donaldson, Polynomial invariants for smooth four manifolds. Oxford preprint.Google Scholar
  3. 3.
    J.M.F. Labastida and M. Percini, Phys. Lett. 212B: 56 (1988).ADSGoogle Scholar
  4. 4.
    S. Ouvry, R. Stora and P. van Baal, Phys. Lett. 220B: 159 (1989).ADSGoogle Scholar
  5. 5.
    H. Kanno, Z. Phys. C43: 477 (1989).MathSciNetADSGoogle Scholar
  6. 6.
    D. Birmingham, M. Rakowski and G. Thompson, Nucl. Phys. B315: 577 (1989).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    H. Kanno, preprint RIFP-819, June 1989.Google Scholar
  8. 8.
    L. Baulieu and I.M. Singer, Nucl. Phys. B (Proc. Suppl.) 5B: 12 (1988).MathSciNetMATHGoogle Scholar
  9. 9.
    R. Brooks, D. Montano and J. Sonnenschein, Phys. Lett. 214B: 91 (1988).MathSciNetADSGoogle Scholar
  10. 10.
    D. Montano and J. Sonnenschein, preprint SLAC-PUB-4760 (to appear in Nucl. Phys. B).Google Scholar
  11. 11.
    J. Sonnenschein, preprint SLAC-PUB-4970, April 1989.Google Scholar
  12. 12.
    M.F. Atiyah and R. Bott, Topology 23: 1 (1984).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M.F. Atiyah and I.M. Singer, Proc. Nail. Acad. Sci. USA 81: 2597 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    V.N. Gribov, Nucl. Phys. B139: 1 (1978).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    I.M. Singer, Commun. Math. Phys. 60: 7 (1978).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Hiroaki Kanno
    • 1
  1. 1.Research Institute for Fundamental PhysicsKyoto UniversityKyotoJapan

Personalised recommendations