Advertisement

Topological Quantum Field Theories: Relations between Knot Theory and Four Manifold Theory

  • B. Grossman
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

We discuss Topological Quantum Field Theories related to the Donaldson theory of four manifolds through dimensional reduction. This leads to theories of instantons, magnetic monopoles, vortices as well as other theories. Stochastic quantization offers a unifying picture of relating theories differing in one dimension. We show how the different topological field theories offer different perspectives on knot theory. Finally, a four-dimenensional picture of surfaces in four dimensions is proposed as a four manifold viewpoint on knot theory.

Keywords

Modulus Space Riemann Surface Wilson Loop Topological Charge Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, J. Diff. Geom. 17, (1982) 661.MathSciNetMATHGoogle Scholar
  2. 2.
    S. Donaldson, J. Diff. Geom. 18, (1983) 269;MATHGoogle Scholar
  3. 2a.
    S. Donaldson, J. Diff. Geom. 26 (1988) 397.Google Scholar
  4. 2b.
    D.S. Freed and K.K. Uhlenbeck, Instantons and Four Manifolds, Springer (New York, 1984).MATHCrossRefGoogle Scholar
  5. 2c.
    H.B. Lawson, The Theory of Gauge Fields in Four Dimensions. Amer. Math. Soc. (Providence, R.I., 1986).Google Scholar
  6. 3.
    A. Floer, Bull AMS 16, (1987) 279.MathSciNetMATHCrossRefGoogle Scholar
  7. 4.
    V.F.R. Jones, Bull AMS 12 (1985) 103,MATHCrossRefGoogle Scholar
  8. 4a.
    V.F.R. Jones, Ann. Math. 126 (1987) 335.MATHCrossRefGoogle Scholar
  9. 4b.
    P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millet and L.H. Kauffman, Topology 26 (1987) 395, On Knots, Princeton, U. Press (Princeton, 1987).MathSciNetCrossRefGoogle Scholar
  10. 5.
    M. Gromov, Inven. Math. 82 (1985) 207.MathSciNetCrossRefGoogle Scholar
  11. 6.
    N.J. Hitchin, Proc. London Math. Soc. (3) 55 (1987) 59.MathSciNetMATHCrossRefGoogle Scholar
  12. 7.
    M.F. Atiyah, in The Mathematical Heritage of Hermann Weyl, Proc. Symp. Pure Math. 48, ed. R. Wells (Amer. Math. Soc., 1988).Google Scholar
  13. 8.
    E. Witten, Comm. Math. Phys. 117 (1988) 353,MathSciNetADSMATHCrossRefGoogle Scholar
  14. 8a.
    E. Witten, Comm. Math. Phys. 118 (1988) 411,MathSciNetADSMATHCrossRefGoogle Scholar
  15. 8b.
    E. Witten, Phys. Lett. 206B (1988) 601.MathSciNetADSGoogle Scholar
  16. 9.
    L. Baulieu and I. Singer in Proceedings of the LAPP meeting on Conformai Field Theories, Anneey-1e-Vieux, march 14–16 (1988) Nucl. Phys. (in press).Google Scholar
  17. 10.
    L. Baulieu and B. Grossman, Phys. Lett. 212B (1988) 351MathSciNetADSGoogle Scholar
  18. 10a.
    B. Grossman, “Topological Quantum Field Theories,” Invited talk at the XVI International Conference in Differential Geometric Methods in Theoretical Physics, Chester England (to be published).Google Scholar
  19. 11.
    The first application, to stochastic quantization, was a natural child of previous approaches suggesting topology.Google Scholar
  20. 11a.
    G. Parisi and N. Sourlas, Phys. Rev. Lett. 43 (1979) 744,ADSCrossRefGoogle Scholar
  21. 11b.
    G. Parisi and N. Sourlas, Nucl. Phys. B 206 (1982) 321.MathSciNetADSCrossRefGoogle Scholar
  22. 11c.
    H. Nicolai, Phys. Lett. 89 (1980) 341;MathSciNetGoogle Scholar
  23. 11d.
    H. Nicolai, Nucl. Phys. B176 (1980) 419;MathSciNetADSCrossRefGoogle Scholar
  24. 11e.
    H. Nicolai, Phys. Lett. B117 (1982) 408.MathSciNetADSGoogle Scholar
  25. 11f.
    G. Parisi and Y.S. Wu, Sci. Sin (1981) 484.Google Scholar
  26. 11g.
    E. Gozzi, Phys. Rev. D28 (1983) 1922;MathSciNetADSGoogle Scholar
  27. 11h.
    E. Gozzi, Phys. Rev. D30 (1984) 1218MathSciNetADSGoogle Scholar
  28. 11i.
    J. Zinn-Justin, Nucl. Phys. B275 [FS17] (1986) 135MathSciNetADSCrossRefGoogle Scholar
  29. 11j.
    S. Alfaro and B. Sakita, Phys. Lett. 121B (1983) 339MathSciNetADSGoogle Scholar
  30. 11k.
    Z. Bern, M.B. Halpern, L. Sadun, C. Taubes, Phys. Lett. 165B (1985) 151.ADSGoogle Scholar
  31. 11l.
    For discussions of the many subtleties involved see the series by M. Claudson and M.B. Halpern, Nucl. Phys. B 230 (1985) 689.MathSciNetADSCrossRefGoogle Scholar
  32. 11n.
    M. Claudson and M.B. Halpern, Phys. Rev. D31 (1985) 3310,MathSciNetADSGoogle Scholar
  33. 11m.
    M. Claudson and M.B. Halpern, Ann. Phys. 166 (1986) 33.MathSciNetADSCrossRefGoogle Scholar
  34. 11o.
    S. Ceccotti and L. Giradello, Ann. Phys. 145 (1983) 81.ADSCrossRefGoogle Scholar
  35. 12a.
    L. Baulieu and B. Grossman, Phys. Lett. 214B (1988) 223.MathSciNetADSGoogle Scholar
  36. 12a.
    M.F. Atiyah and W. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Princeton U. press (Princeton, 1987).Google Scholar
  37. 13.
    G. Chapline and B. Grossman, Phys. Lett. 22B (1989).Google Scholar
  38. 14.
    D. Montano and J. Sonnenshein, Nucl. Phys. B 313 (1989) 258.ADSCrossRefGoogle Scholar
  39. 14a.
    R. Brooks, D. Montano and J. Sonnenschein, Phys. Lett. 217B. (1988) 91.MathSciNetADSGoogle Scholar
  40. 14b.
    D. Montano and J. Sonnenschein, “The Topology of Moduli Space and Quantum Field Theory,” SLAC-PUB-4760,Google Scholar
  41. 14c.
    J. Sonnenschein “Topological Quantum Field Theories, Moduli Spaces and Flat Connections”, SLAC-PUB-4970.Google Scholar
  42. 15.
    D. Birmington, M. Rakowski and G. Thompson, Phys. Lett. 212B (1988) 187;ADSGoogle Scholar
  43. 15a.
    D. Birmington, M. Rakowski and G. Thompson, Phys. Lett. 714B (1988) 381,ADSGoogle Scholar
  44. 15b.
    F.A. Schaposnik and G. Thompson, “Topological Field Theory and Two-Dimensional Abelian Higgs Instantons,” PAR-LP THE-88–51.Google Scholar
  45. 16.
    Y. Yu, “Topological Yang-Mills Field Theory as Stochastic Quantization of Chern-Simons Gauge Theory” BIHEP-TH-89–3 (Phys. Rev. D. in press).Google Scholar
  46. 17.
    O. Dayi “A General Action for Topological Quantum Field Theories” IC 189147 (Nucl. Phys. B in press).Google Scholar
  47. 18.
    E. Witten, Comm. Math. Phys. 121 (1989) 351, Gauge Theories and Integrate Lattice Models, IASSNS-HEP-89/11.Google Scholar
  48. 19.
    L. Crane, Topology of 3-Manifolds and Conformai Field Theories, Yale University preprint.Google Scholar
  49. 19a.
    D. Rolfson, Knots and Links (Publish or Perrish, 1976).Google Scholar
  50. 20.
    A.M. Polyakov, Nucl. Phys. B 268 (1986) 406.MathSciNetADSCrossRefGoogle Scholar
  51. 21.
    E. Corrigan and P. Goddard, Ann. Phys. 154 (1984) 253.MathSciNetADSMATHCrossRefGoogle Scholar
  52. 22.
    N. Ganoulis, P. Goddard and D. Olive, Nucl. Phys. B 305 [FS 5] (1982) 601.MathSciNetADSCrossRefGoogle Scholar
  53. 22a.
    J.L. Gervais and A. Neveu, Nucl. Phys. B 224 (1983) 329.MathSciNetADSCrossRefGoogle Scholar
  54. 23.
    B. Grossman, T. Kephart and J. Stasheff, Comm. Math. Phys. 96 (1984) 431.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. Grossman
    • 1
  1. 1.Rockefeller UniversityN.Y.USA

Personalised recommendations