Superghost Fields in N = 2 Superconformal Algebra

  • Soonkeon Nam
Part of the NATO ASI Series book series (NSSB, volume 245)


The representation of the N = 2 superconformai algebra in terms of BRST super-ghosts is considered. We attempt to apply the Miura transform — or the Feigin-Fuchs contruction — to the ghost field representation of the N = 2 superconformai algebra. We find that although it is possible to have such a construction, it is equivalent to the unshifted representation.


Conformal Field Theory Superconformal Algebra Ghost Number Conformal Algebra World Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Belavin, A.M. Polyakov and A. Zamolodchikov, Nucl. Phys. B241 (1984) 333.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    See for example, P. Ginsparg, Lectures at Les Houches Session XLIX (1988).Google Scholar
  3. [3]
    M. Ademollo et al., Nucl. Phys. B111 (1976) 77.ADSCrossRefGoogle Scholar
  4. [4]
    T. Banks, L. Dixon, D. Friedan and E. Martinec, Nucl. Phys. B299 (1988) 613.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.L. Gervais and A. Neveu, Nucl. Phys. B209 (1982) 125MathSciNetADSCrossRefGoogle Scholar
  6. [5a]
    J.L. Gervais, Phys. Lett 160B (1985) 277,MathSciNetADSGoogle Scholar
  7. [5b]
    J.L. Gervais, Phys. Lett 160B (1985) 279.MathSciNetADSGoogle Scholar
  8. [6]
    R.M. Miura, Jour, of Math. Phys. 9 (1968) 1202.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [7]
    B.L. Feigin and D.B. Fuchs, Funk. Anal. Pril. 16 (1982) 47.CrossRefGoogle Scholar
  10. [8]
    Vl.S. Dotsenko and V.A. Fateev, Nucl Phys. B240 (1984) 312.MathSciNetADSCrossRefGoogle Scholar
  11. [9]
    V. Kac, in Group Theoretical Method in Physics, W. Beiglbock, A. Böhm and E. Takasugi, ed. (Springer, New York, 1979).Google Scholar
  12. [10]
    C. Thorn, Nucl. Phys. B248 (1984) 551.MathSciNetADSCrossRefGoogle Scholar
  13. [11]
    S. Nam, Phys. Lett 172B (1986) 323;MathSciNetADSGoogle Scholar
  14. [11a]
    S. Nam Yale Univ. Thesis (1987).Google Scholar
  15. [12]
    A.B. Zamolodchikov, Theo. Math. Phys. 65 (1986) 1205CrossRefGoogle Scholar
  16. V.A. Fateev and A.B. Zamoldchokov, Nucl Phys. B280[FS18](1987) 644.ADSCrossRefGoogle Scholar
  17. [13]
    V.A. Fateev and S.L. Lykyanov, Int. Jour, of Mod. Phys. A3 (1988) 507.MathSciNetADSCrossRefGoogle Scholar
  18. [14]
    S. Nam, VPI-IHEP 88/09, to appear in Int. Jour, of Mod. Phys. A. Google Scholar
  19. [15]
    D. Gepner, Nucl. Phys. B311 (1988) 191.MathSciNetADSCrossRefGoogle Scholar
  20. [16]
    E.J. Martinec and G.M. Sotkov, Phys. Lett. 208B (1988) 249.MathSciNetADSGoogle Scholar
  21. [17]
    I.M. Krichever and S.P. Novikov, Func. Anal, and its Appl. 21(2) (1987) 126.MathSciNetMATHCrossRefGoogle Scholar
  22. [18]
    See for example A. Perelomov, Generalized Coherent States and Their Applications, (Springer-Verlag, Heidelberg, 1986).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Soonkeon Nam
    • 1
  1. 1.Department of PhysicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations