Superghost Fields in N = 2 Superconformal Algebra

  • Soonkeon Nam
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

The representation of the N = 2 superconformai algebra in terms of BRST super-ghosts is considered. We attempt to apply the Miura transform — or the Feigin-Fuchs contruction — to the ghost field representation of the N = 2 superconformai algebra. We find that although it is possible to have such a construction, it is equivalent to the unshifted representation.

Keywords

Soliton Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Belavin, A.M. Polyakov and A. Zamolodchikov, Nucl. Phys. B241 (1984) 333.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    See for example, P. Ginsparg, Lectures at Les Houches Session XLIX (1988).Google Scholar
  3. [3]
    M. Ademollo et al., Nucl. Phys. B111 (1976) 77.ADSCrossRefGoogle Scholar
  4. [4]
    T. Banks, L. Dixon, D. Friedan and E. Martinec, Nucl. Phys. B299 (1988) 613.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.L. Gervais and A. Neveu, Nucl. Phys. B209 (1982) 125MathSciNetADSCrossRefGoogle Scholar
  6. [5a]
    J.L. Gervais, Phys. Lett 160B (1985) 277,MathSciNetADSGoogle Scholar
  7. [5b]
    J.L. Gervais, Phys. Lett 160B (1985) 279.MathSciNetADSGoogle Scholar
  8. [6]
    R.M. Miura, Jour, of Math. Phys. 9 (1968) 1202.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [7]
    B.L. Feigin and D.B. Fuchs, Funk. Anal. Pril. 16 (1982) 47.CrossRefGoogle Scholar
  10. [8]
    Vl.S. Dotsenko and V.A. Fateev, Nucl Phys. B240 (1984) 312.MathSciNetADSCrossRefGoogle Scholar
  11. [9]
    V. Kac, in Group Theoretical Method in Physics, W. Beiglbock, A. Böhm and E. Takasugi, ed. (Springer, New York, 1979).Google Scholar
  12. [10]
    C. Thorn, Nucl. Phys. B248 (1984) 551.MathSciNetADSCrossRefGoogle Scholar
  13. [11]
    S. Nam, Phys. Lett 172B (1986) 323;MathSciNetADSGoogle Scholar
  14. [11a]
    S. Nam Yale Univ. Thesis (1987).Google Scholar
  15. [12]
    A.B. Zamolodchikov, Theo. Math. Phys. 65 (1986) 1205CrossRefGoogle Scholar
  16. V.A. Fateev and A.B. Zamoldchokov, Nucl Phys. B280[FS18](1987) 644.ADSCrossRefGoogle Scholar
  17. [13]
    V.A. Fateev and S.L. Lykyanov, Int. Jour, of Mod. Phys. A3 (1988) 507.MathSciNetADSCrossRefGoogle Scholar
  18. [14]
    S. Nam, VPI-IHEP 88/09, to appear in Int. Jour, of Mod. Phys. A. Google Scholar
  19. [15]
    D. Gepner, Nucl. Phys. B311 (1988) 191.MathSciNetADSCrossRefGoogle Scholar
  20. [16]
    E.J. Martinec and G.M. Sotkov, Phys. Lett. 208B (1988) 249.MathSciNetADSGoogle Scholar
  21. [17]
    I.M. Krichever and S.P. Novikov, Func. Anal, and its Appl. 21(2) (1987) 126.MathSciNetMATHCrossRefGoogle Scholar
  22. [18]
    See for example A. Perelomov, Generalized Coherent States and Their Applications, (Springer-Verlag, Heidelberg, 1986).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Soonkeon Nam
    • 1
  1. 1.Department of PhysicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations