Advertisement

Spontaneous Symmetry Breaking in 4-Dimensional Heterotic String

  • Jnanadeva Maharana
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactifled bosonic coordinates are ferrnionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action.

Keywords

Gauge Field Ward Identity Heterotic String Spontaneous Symmetry Breaking Scalar Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Vol I and II, Cambridge University Press 1986.Google Scholar
  2. [2]
    D.J. Gross, Phys. Rev. Lett. 60, 1224 (1988).ADSGoogle Scholar
  3. [3]
    I.J. Muzinich and M. Soldate, Phys. Rev. D37, 359 (1988)ADSGoogle Scholar
  4. [3a]
    D. Amati, M. Ciafoloni and G. Veneziano, Phys. Lett. 177B, 81 (1987), CERN-TH 4886ADSGoogle Scholar
  5. [3b]
    D.J. Gross and P.F. Mende, Phys. Lett. 197B, 129 (1987).MathSciNetADSGoogle Scholar
  6. [4]
    K.S. Narain, Phys. Lett. 109B, 41 (1986)MathSciNetADSGoogle Scholar
  7. [4a]
    K.S. Narain, M. Sarmadi and E. Witten, Nucl. Phys., B279, (1987).Google Scholar
  8. [5]
    J.H. Schwarz, CHENCTProc. Int. National Conference on Superstrings, Cosmology and Composite Structure, Maryland, 1987, Ed. J. Gates and R.N. Mohapatra, World Scientific Pub. (1988).Google Scholar
  9. [6]
    W. Lerche, D. Lust and A.N. Schelleken, Nucl. Phys., B287, 477 (1987)ADSCrossRefGoogle Scholar
  10. N. Seiberg and E. Witten, Nucl. Phys. B276, 272 (1986).MathSciNetADSCrossRefGoogle Scholar
  11. [7]
    N. Seiberg and E. Witten, Nucl. Phys., B276, 272 (1986).MathSciNetADSCrossRefGoogle Scholar
  12. [8]
    H. Kawai, D. Lewellen and H.S. Tye, Phys. Rev. D34, 3794 (1986).;MathSciNetADSGoogle Scholar
  13. [8a]
    H. Kawai, D. Lewellen and H.S. Tye, Nucl. Phys., B288, 1 (1987).MathSciNetADSCrossRefGoogle Scholar
  14. [9]
    I. Antoniadis, C. Bachas and C. Kounnas, Nucl. Phys., B289, 84 (1987).MathSciNetADSGoogle Scholar
  15. [10]
    S. Ferrara, C. Kounnas and M. Porrati, to be published.Google Scholar
  16. [11]
    I. Antoriadis, C. Bachas and C. Kounnas, Phys. Lett., 200B, 297 (1988).ADSGoogle Scholar
  17. [12]
    C. Kounnas and M. Porrati, Nucl. Phys. B310, 355 (1988);MathSciNetADSCrossRefGoogle Scholar
  18. [12a]
    D. Chang and A. Kumar, Phys. Rev. D38, 1893 (1988).ADSGoogle Scholar
  19. [13]
    P. Goddard, W. Nahm and D. Olive, Phys. Lett. 160B, 111 (1985)MathSciNetADSGoogle Scholar
  20. P. DiVechhia, V.G. Knizhik, J.L. Petersen and P. Rossi, Nucl. Phys. B253, 701 (1985)ADSCrossRefGoogle Scholar
  21. P. Goddard and D. Olive, Nucl. Phys. B257, 226 (1985)MathSciNetADSCrossRefGoogle Scholar
  22. P. Goddard, A. Kent and D. Olive, Commun. Math. Phys. 103, 105 (1988).MathSciNetADSCrossRefGoogle Scholar
  23. [14]
    I. Antoniadis, C. Bachas, C. Kounnas and P. Windey, Phys. Lett., 171B, 51 (1986).MathSciNetADSGoogle Scholar
  24. [15]
    J. Maharana, Phys. Lett., 211B, 431 (1988).ADSGoogle Scholar
  25. [16]
    A. Das, J. Maharana and S. Roy, preprint, Fermilab-Pub-89/65-T/UR1106 ER13065–573, Phys. Rev. D (to be published).Google Scholar
  26. [17]
    Ref. 8, 11 and J. Bagger, D. Nemeschansky, N. Seiberg and S. Yankielowicz, Nucl. Phys., B289, 531 (1987).MathSciNetGoogle Scholar
  27. [18]
    For earlier work see G. Veneziano, Phys. Lett., 167B, 388 (1986)MathSciNetADSGoogle Scholar
  28. [18a]
    J. Maharana and G. Veneziano, Phys. Lett., 109B, 177 (1986)MathSciNetADSGoogle Scholar
  29. [18b]
    J. Maharana, Nucl. Phys. B286, 126 (1987) ref. 15. Also see M. Evans and B.A. Ovrut, Preprints UPR-0377T, UPR-0392T (1989); M. Porrati, LBL preprint.MathSciNetADSCrossRefGoogle Scholar
  30. [19]
    J. Maharana, Orsay preprint, LPTHE Orsay 88/29. Also see A. Sen, Phys. Rev. D32, 2102 (1985);ADSGoogle Scholar
  31. [19a]
    J. Maharana, Nucl. Phys. 278B, 289 (1986)Google Scholar
  32. [19b]
    C.G. Collan, E. Martinec, D. Friedan and M. Perry, Nucl. Phys. 262B, 593 (1985), for the pioneering work on relations between conformai invariance and the equations of motion of background fields.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jnanadeva Maharana
    • 1
  1. 1.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations