Advertisement

Explicit Soliton-Generating Bäcklund Transformations

  • H. C. Yen
  • J. C. Shaw
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

Some 2-d nonlinear differential equations (NLDE) can be regarded as the integrability condition for certain linear systems1 possessing a free spectral parameter λ:
$$ {\partial _x}\phi \left( \lambda \right) = U\left( \lambda \right)\phi \left( \lambda \right),{\mkern 1mu} \quad {\partial _t}\phi \left( \lambda \right) = V\left( \lambda \right)\phi \left( \lambda \right),$$
(1)
where φ, U, V are all square matrix functions of x, t and λ, and U, V are rational functions of λ.

Keywords

Soliton Solution Nonlinear Differential Equation Projection Matrix Vacuum Solution Seed Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. D. Lax, Comm. Pure Appl. Math. 21, 467 (1968);MathSciNetMATHCrossRefGoogle Scholar
  2. 1a.
    V. E. Zakharov and P. B. Shabat, Sov. Phys. JETP 34, 62 (1972);MathSciNetADSGoogle Scholar
  3. 1b.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Phys. Rev. Lett. 31, 125 (1973);MathSciNetADSMATHCrossRefGoogle Scholar
  4. 1c.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Stud. Appl. Math. 53, 249 (1974)MathSciNetGoogle Scholar
  5. 2.
    M. F. Atiyah and R. S. Ward, Comm. Math. Phys. 55, 117 (1977);MathSciNetADSMATHCrossRefGoogle Scholar
  6. 2a.
    E. Corrigan, D. B. Fairlie, P. Goddard and R. G. Yates, Comm. Math. Phys. 58, 223 (1978);MathSciNetADSCrossRefGoogle Scholar
  7. 2b.
    V. E. Zakharov and A. V. Mikhailov, Sov. Phys. JETP 74, 1953 (1978);MathSciNetGoogle Scholar
  8. 2c.
    V. E. Zakharov and P. B. Shabat, Funct. Anal, Appl. 13, 166 (1979)MathSciNetGoogle Scholar
  9. 3.
    S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, “Theory of Solitons”, Consultants Bureau, New York 1984MATHGoogle Scholar
  10. 4.
    P. Forgacs, Z. Horvath and L. Palla, Phys. Rev. D23, 1876 (1981);MathSciNetADSGoogle Scholar
  11. 4a.
    P. Forgacs, Z. Horvath and L. Palla, Nucl. Phys. B229, 77 (1983)MathSciNetADSCrossRefGoogle Scholar
  12. 5.
    V. E. Zakharov and A. V. Mikhailov, Sov. Phys. JETP 47, 1017 (1978);ADSGoogle Scholar
  13. 5a.
    L.-L. Chau Wang, in Proceedings of Guanzhou Conference on Theoretical Particle Physics, Jan. 1980, CantonGoogle Scholar
  14. 6.
    K. Pohlmeyer, Comm. Math. Phys. 46, 207 (1978);MathSciNetADSCrossRefGoogle Scholar
  15. 6a.
    L. V. Cheredrik, Teor. Mat. Fiz. 38, 120 (1979);Google Scholar
  16. 6b.
    A. T. Ogielsky, M. K. Prasad, A. Sinha and L.-L. Chau Wang, Phys. Lett. 91B, 387 (1980)ADSGoogle Scholar
  17. 7.
    T. L. Curtright and C. K. Zachos, Phys. Rev. D21, 411 (1980);MathSciNetADSGoogle Scholar
  18. 7a.
    Z. Popowicz and L.-L. Chau Wang, Phys. Lett. 98B, 253 (1981);ADSGoogle Scholar
  19. 7b.
    G. Bhattacharya and S. Rajeev, Nucl. Phys. B246, 157 (1984);MathSciNetADSCrossRefGoogle Scholar
  20. 7c.
    K.-C. Chou and Y.-B. Dai, Commun. Theor. Phys. (China) 3, 767 (1984);MathSciNetGoogle Scholar
  21. 7d.
    H. J. de Vega, preprints LPTHE 85/23 and 85/53; M. C. B. Abdalla, Phys. Lett. B152, 215 (1985);MathSciNetADSGoogle Scholar
  22. 7e.
    S. J. Gates, C. M. Hull and M. Rocek, Nucl. Phys. B248, 157 (1984);MathSciNetADSCrossRefGoogle Scholar
  23. 7f.
    T. L. Curtright and C. K. Zachos, Phys. Rev. Lett. 53, 1799 (1984);MathSciNetADSCrossRefGoogle Scholar
  24. 7g.
    P. Di Vecchia, V. G. Knizhnik, J. L. Petersen and P. Rossi, Nucl. Phys. B253, 701 (1985);ADSCrossRefGoogle Scholar
  25. 7h.
    E. Abdalla and M. C. B. Abdalla, Phys. Lett. B152, 59 (1985);MathSciNetADSGoogle Scholar
  26. 7i.
    L.-L. Chau and H. C. Yen, Phys. Lett. B177, 368 (1986)MathSciNetADSGoogle Scholar
  27. 8.
    A. Belavin and V. E. Zakharov, Phys. Lett. 73B, 53 (1978);MathSciNetADSGoogle Scholar
  28. 8a.
    K. Pohlmeyer, Comm. Math. Phys. 72, 37 (1980);MathSciNetGoogle Scholar
  29. 8b.
    G. Sartori, Nuovo Cimento 56A, 73 (1980);MathSciNetADSGoogle Scholar
  30. 8c.
    L.-L. Chau, M. K. Prasad and A. Sinha, Phys. Rev. D23, 2321 (1981);MathSciNetADSGoogle Scholar
  31. 8d.
    L.-L. Chau, M. K. Prasad and A. Sinha, ibid D24, 1574 (1981)MathSciNetADSGoogle Scholar
  32. 9.
    L.-L. Chau, J. C. Shaw and H. C. Yen, Int. J. Mod. Phys. A4, 2715 (1989)MathSciNetADSGoogle Scholar
  33. 10.
    E. Witten, Phys. Lett. 77B, 394 (1978);ADSGoogle Scholar
  34. 10a.
    M. Sohnius, Nucl. Phys. B136, 461 (1978);MathSciNetGoogle Scholar
  35. 10b.
    L.-L. Chau, M.-L. Ge and C.-S. Lim, Phys. Rev. D33, 1056 (1986).MathSciNetADSGoogle Scholar
  36. 11.
    I. V. Volovich, Phys. Lett. 129B, 429 (1983);MathSciNetADSGoogle Scholar
  37. 11a.
    C. Devchand, Nucl. Phys. B238 333 (1984);ADSCrossRefGoogle Scholar
  38. 11b.
    L.-L. Chau, M.-L. Ge and Z. Popowicz, Phys. Rev. Lett. 52, 1940 (1984)MathSciNetADSCrossRefGoogle Scholar
  39. 12.
    J. Hamad and M. Jacques, J. Math. Phys. 27, 2394 (1986);MathSciNetADSCrossRefGoogle Scholar
  40. 12a.
    J. Tafel, J. Math. Phys, 28, 240 (1987);MathSciNetADSMATHCrossRefGoogle Scholar
  41. 12b.
    N. Suzuki, Comm. Math. Phys. 133, 155 (1987); C. Devchand, preprint THEP 88/13.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. C. Yen
    • 1
  • J. C. Shaw
    • 2
  1. 1.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations