Anomalies. BRS Symmetry and Superconnections

  • Allen C. Hirshfeld
Part of the NATO ASI Series book series (NSSB, volume 245)


The anomaly problem in quantum field theory is reviewed, including Its resolution in terms of BRS cohomology. The geometric meaning of the BRS symmetry is clarified by the use of superconnections in an appropriate fibre bundle.


Gauge Theory Gauge Group Gauge Transformation Gauge Potential Ghost Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Becchi, A. Rouet and R. Stora, Phys. Lett. B52, 344 (1974).ADSGoogle Scholar
  2. 2.
    J. Dixon, Proceedings of the 17th International Conference on Differential Geometric Methods in Theoretical Physics, Chester, England August 1988, and unpublished.Google Scholar
  3. R. Stora, in “Progress in Gauge Field Theories”, eds. G. t’Hooft, A. Lehmann, P. K. Mitter, I. M. Singer and R. Stora, Plenum, New York (1984).Google Scholar
  4. M. F. Atiyah and I. M. Singer, Proceedings of the National Academy of Sciences, USA, Vol. 81, 2597 (1984).Google Scholar
  5. B. Zumino, in “Relativity, Groups and Topology”, eds. B. de Witt and R. Stora, North Holland, Amsterdam (1984).Google Scholar
  6. L. Bonora and P. Cotta-Ramusino, Comm. Math. Physics 87, 589 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  7. M. Dubois-Violette, in “Fields and Geometry”, 22nd International Winter School in Karpacz, Poland, ed. A. Jadzyk (1986).Google Scholar
  8. 3.
    F. Hegenbarth and A. C. Hirshfeld, Proceedings of the 17th International Conference on Geometric Differential Methods in Theoretical Physics, Chester, England, July 1988.Google Scholar
  9. 4.
    J. Steinberger, Phys. Rev. 76, 1180 (1949).ADSMATHCrossRefGoogle Scholar
  10. 5.
    S. L. Adler, Phys. Rev. 177, 2426 (1969).ADSCrossRefGoogle Scholar
  11. J. S. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969).ADSGoogle Scholar
  12. 6.
    M. Gell-Mann, Acta Phys. Austriaca Suppl. IV, 733 (1972).Google Scholar
  13. 7.
    S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).ADSGoogle Scholar
  14. 8.
    M. B. Green and J. H. Schwarz, Phys. Lett. 149B, (1984).Google Scholar
  15. 9.
    W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Academic Press, New York (1972).MATHGoogle Scholar
  16. 10.
    B. Kostant and S. Sternberg, Ann. Phys. 176, 49 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 11.
    D. Quillen, Topology 24, 89 (1985).MathSciNetMATHGoogle Scholar
  18. 12.
    H. B. Lawson, “The Theory of Gauge Fields in Four Dimensions”, CBMS Regional Conference Series in Mathematics, Nr. 58, (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Allen C. Hirshfeld
    • 1
  1. 1.Physics DepartmentUniversity of DortmundDortmund 50Germany

Personalised recommendations