Progress in Multi-Genus Calculations for the Spinning String

  • Andrew Parkes
Part of the NATO ASI Series book series (NSSB, volume 245)


We review progress in the calculation of multiloop amplitudes for the closed Neveu-Schwarz-Ramond string in a flat ten dimensional background. When the picture changing operators are placed at the zeroes of a holomorphic one-form then it turns out to be possible to do the sum over spin structures for genus g ≤ 9 for the vacuum amplitude. The result of this sum is zero point wise in moduli space and not just a total derivative as might be expected in a more general gauge. We look at the possibility that singularities could arise for certain values of the moduli and also discuss why this gauge choice is so powerful by showing the similarity to “light-cone” diagrams.


Modulus Space Riemann Surface Spin Structure Theta Function Matter Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    J. H. Schwarz, Phys. Rep. 89C (1982), 223;ADSCrossRefGoogle Scholar
  2. 1b.
    J. Scherk, Rev. Mod. Phys. 47 (1975), 123;MathSciNetADSCrossRefGoogle Scholar
  3. 1c.
    E. D’Hoker and D. Phong, Rev. Mod. Phys. 60 (1988), 917.MathSciNetADSCrossRefGoogle Scholar
  4. 2a.
    J. H. Schwarz, ed., Superstrings, Vols. I and II, (World Scientific, Singapore, 1985);Google Scholar
  5. 2b.
    M. B. Green and D. J. Gross, eds., Unified String Theories, (World Scientific, Singapore, 1986);MATHGoogle Scholar
  6. 2c.
    M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vols. I and II, (Cambridge University Press, 1987);MATHGoogle Scholar
  7. 2d.
    M. Kaku, Introduction to Superstrings, (Springer-Verlag, 1988).MATHCrossRefGoogle Scholar
  8. 3.
    D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B271 (1986), 93.MathSciNetADSGoogle Scholar
  9. 4.
    E. Martinec, Nuci Phys. B281 (1986), 157.MathSciNetADSGoogle Scholar
  10. 5.
    E. Verlinde and H. Verlinde, Phys. Lett. B192 (1987), 95.MathSciNetADSGoogle Scholar
  11. 6.
    J.J. Atick, J. Rabin and A. Sen, Nucl. Phys. B299 (1988), 279.MathSciNetADSCrossRefGoogle Scholar
  12. 7.
    J.J. Atick, G. Moore and A. Sen, Nucl. Phys. B307 (1988), 221.MathSciNetADSCrossRefGoogle Scholar
  13. 8.
    J.J. Atick, G. Moore and A. Sen, Nucl. Phys. B308 (1988), 1.MathSciNetADSGoogle Scholar
  14. 9.
    G. Moore and A. Morozov, Nucl. Phys. B306 (1988), 387.MathSciNetADSCrossRefGoogle Scholar
  15. 10.
    H. La and P. Nelson, “Unambiguous fermionic string amplitudes”, BUHEP-89–8,UPR-0381T, Feb 89.Google Scholar
  16. 11.
    M. Martellini and P. Teofilatto, Phys. Lett. B211 (1988), 293.MathSciNetADSGoogle Scholar
  17. 12.
    A. Parkes, Phys. Lett. B217 (1989), 458.MathSciNetADSGoogle Scholar
  18. 13.
    O. Lechtenfeld and A. Parkes, Nucl. Phys. be published. “On covariant multi-loop superstring amplitudes” April 1989.Google Scholar
  19. 14.
    D. Mumford, Tata Lectures on Theta,, Birkhäuser, Boston 1983.MATHGoogle Scholar
  20. 15.
    J. Fay, Theta, Functions on Riemann Surfaces, Springer Notes in Mathematics 352, 1973.Google Scholar
  21. 16.
    H.M. Farkas and I. Kra, Riemann Surfaces (Springer, 1980).CrossRefGoogle Scholar
  22. 17a.
    G. Moore, P. Nelson and J. Polchinski, Phys. Lett. B169 (1986), 47;MathSciNetADSGoogle Scholar
  23. 17b.
    G. Moore and P. Nelson, Nucl. Phys. B274 (1986), 509;MathSciNetADSGoogle Scholar
  24. 17c.
    E. D’Hoker and D. Phong, Nucl. Phys. B278 (1986), 225,MathSciNetADSCrossRefGoogle Scholar
  25. 17d.
    E. D’Hoker and D. Phong, Nucl. Phys.ibid. B292 (1987), 317;MathSciNetADSCrossRefGoogle Scholar
  26. 17e.
    S. Chaudhuri, H. Kawai and S.-H. Tye, Cornell preprint CLNS 86/723 (1986).Google Scholar
  27. 18.
    E. Verlinde and H. Verlinde, Nucl. Phys. B288 (1987), 357.MathSciNetADSCrossRefGoogle Scholar
  28. 19.
    O. Lechtenfeld and A. Parkes, Phys. Lett. B202 (1988), 75.MathSciNetADSGoogle Scholar
  29. 20.
    O. Lechtenfeld, “Superconformai ghost correlations on Riemann surfaces”, City College preprint CCNY-HEP-89/09.Google Scholar
  30. 21.
    A. Tsuchiya, Phys. Rev. D39 (1989), 1626, “On the non-renormalization theorem in superstring theories at the two loop order”, TIT-HEP April, 1989.MathSciNetADSGoogle Scholar
  31. 22a.
    A. Morozov, Nucl. Phys. B318 (1989), 137;ADSCrossRefGoogle Scholar
  32. 22b.
    A. Morozov and A. Perelomov, Int. J. Mod. Phys. A4 (1989), 1773MathSciNetADSGoogle Scholar
  33. 22c.
    A. Morozov, Nucl. Phys. B303 (1988), 343.ADSCrossRefGoogle Scholar
  34. 23.
    O. Lechtenfeld, Nucl. Phys. B309 (1988) 361, “On the finiteness of the super-string” Nucl. Phys. B to be published.MathSciNetADSGoogle Scholar
  35. 24a.
    L. Dixon, D. Friedan, E. Martinec and S.H. Shenker, Nucl. Phys. B282 (1987) 13;MathSciNetADSCrossRefGoogle Scholar
  36. 24b.
    A.B. Zamolodchikov, Nucl. Phys. B285 (1987) 481;MathSciNetADSCrossRefGoogle Scholar
  37. 24c.
    M. Bershadsky and A. Radul, Int. J. Mod. Phys. A2 (1987) 165;MathSciNetADSGoogle Scholar
  38. 24d.
    V. Knizhnik, Comm. Math. Phys. 112 (1987) 567,MathSciNetADSMATHCrossRefGoogle Scholar
  39. 24e.
    V. Knizhnik, Phys. Lett. B196 (1987) 473;MathSciNetADSGoogle Scholar
  40. 24f.
    D. Montano, Nucl. Phys. B297 (1987) 125;MathSciNetADSGoogle Scholar
  41. 24g.
    D. Lebedev and A. Morozov, Nucl. Phys. B302 (1988) 163.MathSciNetADSCrossRefGoogle Scholar
  42. 25a.
    E. Gava, R. Iengo and G. Sotkov, Phys. Lett. B207 (1988) 283MathSciNetADSGoogle Scholar
  43. 25b.
    R. Iengo and C.-J. Zhu, Phys. Lett. B212 (1988) 309, 313ADSGoogle Scholar
  44. 25c.
    C.-J. Zhu, Trieste preprint ISAS/88/147 (1988).Google Scholar
  45. 26.
    M. Bershadsky, Phys. Lett. B201 (1988) 67.MathSciNetADSGoogle Scholar
  46. 27a.
    S.B. Giddings and S.A. Wolpert, Comm. Math. Phys. 109 (1987) 177;MathSciNetADSMATHCrossRefGoogle Scholar
  47. 27b.
    E. D’Hoker and S.B. Giddings, Nucl. Phys. B291 (1987) 90;MathSciNetADSCrossRefGoogle Scholar
  48. 27c.
    N. Berkovits, Nucl. Phys. B304 (1988) 537,MathSciNetADSCrossRefGoogle Scholar
  49. 27d.
    N. Berkovits, Phys. Lett. B219 (1989) 278;MathSciNetADSGoogle Scholar
  50. 27e.
    R. Tzani, Phys. Rev. D15 (1988) 3112, “The problem of the gauge in Polyakov’s theory: Relation between light-cone and conformai gauge” City College preprint CCNY-HEP-89/1.ADSGoogle Scholar
  51. 28a.
    K.-J. Hamada and M. Takao, Int. J. Mod. Phys. A4 (1989) 2283,MathSciNetADSGoogle Scholar
  52. 28b.
    K.-J. Hamada and M. Takao, Nucl. Phys. B313 (1989) 80.MathSciNetADSCrossRefGoogle Scholar
  53. 29.
    E. D’Hoker and D.H. Phong “Functional determinants on mandelstam diagrams”, Preprint UCLA/88/TEP/39.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Andrew Parkes
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaDavisUSA

Personalised recommendations