Advertisement

A Geometric Approach to the String BRS Cohomology

  • Henrik Aratyn
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

A study of constrained dynamical systems has received increasing attention in recent years. A reason for this interest can undoubtedly be traced back to the impact made in theoretical physics by string theory, where importance of the Batalin-Fradkin-Vilkovisky1 (BFV) quantization method, centered around nilpotent BRS charge, was recognized very early.

Keywords

Poisson Bracket Heisenberg Algebra Virasoro Algebra Supersymmetric Quantum Mechanic Extended Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    E.S. Fradkin and G.A. Vilkovisky, Phys. Lett. 55B:224 (1975), and preprint CERN-TH 2332 (1977)MathSciNetADSGoogle Scholar
  2. 1b.
    I.A. Batalin and G.A. Vilkovisky, Phys. Lett. 69B:309 (1977)ADSGoogle Scholar
  3. 1c.
    M. Henneaux, Phys. Reports 126:1 (1985).MathSciNetADSCrossRefGoogle Scholar
  4. 2.
    T. Kugo and I. Ojima, Suppl. Progr. Theor. Phys. 66:1 (1979).ADSCrossRefGoogle Scholar
  5. 3.
    M. Kato and K. Ogawa, Nucl. Phys. B212:443 (1983).ADSCrossRefGoogle Scholar
  6. 4.
    H. Aratyn and R. Ingermanson, Nucl. Phys. B299:507 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. 5a.
    H. Aratyn, R. Ingermanson and A.J. Niemi, Phys. Lett. 194B:506 (1987);MathSciNetADSGoogle Scholar
  8. 5b.
    H. Aratyn, R. Ingermanson and A.J. Niemi, Phys. Lett. 195B:149 (1987);MathSciNetADSGoogle Scholar
  9. 5b.
    H. Aratyn, R. Ingermanson and A.J. Niemi, Nucl. Phys. B307:157 (1988).MathSciNetADSCrossRefGoogle Scholar
  10. 6.
    H. Aratyn and R. Ingermanson, Phys. Rev. Lett. 61:2050 (1988); Int. J. Mod. Phys. A (review sect.) to appear.MathSciNetADSCrossRefGoogle Scholar
  11. 7.
    H. Aratyn and R. Ingermanson, Class. Quantum Grav. 5:L213 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 8.
    E. Del Giudice, P. Di Vecchia and S. Fubini, Ann. Phys.(N.Y.) 70:378 (1972).ADSCrossRefGoogle Scholar
  13. 9.
    P. Goddard and C.B. Thorn, Phys. Lett. 40B:235 (1972).ADSGoogle Scholar
  14. 10a.
    R.C. Brower, Phys. Rev. D6:1655 (1972);ADSGoogle Scholar
  15. 10b.
    R.C. Brower and P. Goddard, Nucl. Phys. B40:437 (1972);ADSCrossRefGoogle Scholar
  16. 10c.
    see also J.H. Schwarz, Phys. Repts. 8:269 (1973).ADSCrossRefGoogle Scholar
  17. 11a.
    A. Pressley and G. Segal, “Loop Groups” Clarendon, Oxford (1986);Google Scholar
  18. 11b.
    H. Neuberger, Phys. Lett. 188B:214 (1987).MathSciNetADSGoogle Scholar
  19. 12.
    L. Brink and D. Olive, Nucl. Phys. B56:253 (1973).ADSCrossRefGoogle Scholar
  20. 13.
    H. Aratyn, to appear in Class. Quantum Grav. and UIC preprint, UICHEP-Pub-89–9.Google Scholar
  21. 14.
    I.A. Batalin and E.S. Fradkin, Nucl. Phys. B279:514 (1987).MathSciNetADSCrossRefGoogle Scholar
  22. 15.
    M. Henneaux, in:“Quantum Mechanics of Fundamental Systems”, C. Teitelboim, ed., Plenum Press, New York (1988); Duality Theorems in BRST Cohomology, Univ. Libre de Bruxelles preprint.Google Scholar
  23. 16.
    E. Witten, Nucl. Phys. B188:513 (1981);ADSCrossRefGoogle Scholar
  24. 16.
    E. Witten, Nucl. Phys. B207:253 (1982).MathSciNetADSCrossRefGoogle Scholar
  25. 17.
    D. Karabali, contribution to these proceedings and references therein.Google Scholar
  26. 18.
    M. Henneaux, Phys. Lett. 177B:35 (1986).MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Henrik Aratyn
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations