Hamiltonian Flows, SU(∞), SO(∞), USp(∞), and Strings

  • Cosmas Zachos
Part of the NATO ASI Series book series (NSSB, volume 245)


Based on the infinite-dimensional algebras we have introduced, SU(∞) is identified with general hamiltonian flows in 2-d phase-space, SO(∞) with flows generated by x-p-odd hamiltonians, and USp(∞) with those of hamiltonians of special symmetry. Gauge theories for SU(∞), SO(∞), and USp(∞) are thus formulated in terms of surface (sheet) coordinates for toroidal phase-space. Spacetime-independent configurations of their gauge fields directly yield the quadratic Schild-Eguchi string action.


Gauge Theory Poisson Bracket Structure Constant Gauge Field Lagrangian Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    D. Fairlie, P. Fletcher, and C. Zachos, Phys. Lett. 218B:203 (1989)MathSciNetADSGoogle Scholar
  2. 1b.
    D. Fairlie and C. Zachos, Phys. Lett. 224B:101 (1989);MathSciNetADSGoogle Scholar
  3. 1c.
    C. Zachos and D. Fairlie, ANL-HEP-CP-89–36, to appear in the proceedings of Strings 89, Texas A&M. Google Scholar
  4. 2a.
    E. Floratos and J. Iliopoulos, Phys. Lett. 20IB:237 (1988)MathSciNetADSGoogle Scholar
  5. 2b.
    Antoniadis T et al., Nucl. Phys. B300 [FS22]:549 (1988)MathSciNetADSCrossRefGoogle Scholar
  6. 2c.
    T. Arakelyan and G. Savvidy, Phys. Lett. 214B:350 (1988)MathSciNetADSGoogle Scholar
  7. 2d.
    T. Arakelyan and G. Savvidy, Phys. Lett. 223B:41 (1989).MathSciNetADSGoogle Scholar
  8. 2e.
    Earliest work: V. Arnold, Ann. Inst. Fourier 16:319 (1966)CrossRefGoogle Scholar
  9. 2f.
    V. Arnold, Mathematical Methods of Classical Mechanics, Appendix 2.K, p.339, Springer Verlag, New York, (1978)Google Scholar
  10. 2g.
    E. Corrigan and D. Fairlie, and J. Goldstone, (unpublished).Google Scholar
  11. 3a.
    J. Hoppe, M.I.T. Ph.D. Thesis (1982); Constraints Theory and Relativistic Dynamics — Florence 1986, G. Longhi and L. Lusanna eds., p.267,Google Scholar
  12. 3b.
    J. Hoppe, World Scientific, Singapore, (1987);Google Scholar
  13. 3b.
    J. Hoppe, Phys. Lett. 215B:706 (1988).MathSciNetADSGoogle Scholar
  14. 4.
    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, (1931).MATHGoogle Scholar
  15. 5a.
    D. Fuks, Funct. Anal. & Appl. 19:305 (1985);MathSciNetMATHCrossRefGoogle Scholar
  16. 5b.
    I. Bakas, Maryland preprint 89–164, April 1989Google Scholar
  17. 5c.
    K. Case and A. Monge, J. Math. Phys. 30:1250 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 6.
    C. Pope and K. Stelle, Texas A&M preprint CTP-TAMU-07/89; J. Hoppe, Karlsruhe preprint KA-THEP-18–1988.Google Scholar
  19. 7. a).
    E. Wigner, Phys.Rev. 40:749 (1932);ADSCrossRefGoogle Scholar
  20. 7. b).
    J. Moyal, Proc.Camb.Phil.Soc. 45:99(1949);MathSciNetADSMATHCrossRefGoogle Scholar
  21. 7. c).
    G. Baker, Phys.Rev. 109:2198 (1958);MathSciNetADSCrossRefGoogle Scholar
  22. 7. d).
    D. Fairlie, Proc.Camb.Phil.Soc. 60:581 (1964);MathSciNetADSMATHCrossRefGoogle Scholar
  23. 7. e).
    T. Jordan and E. Sudarshan, Rev.Mod.Phys. 33:515 (1961);MathSciNetADSCrossRefGoogle Scholar
  24. 7. f).
    F. Berezin, Sov.Phys.Usp. 23:763 (1980);ADSCrossRefGoogle Scholar
  25. 7. g).
    I. Bakas and A. Kakas, Class. Quant. Grav. 4:L67 (1987).MathSciNetADSCrossRefGoogle Scholar
  26. 8.
    C. Zachos, unpublished.Google Scholar
  27. 9a.
    G.’t Hooft, Nucl.Phys. B138:1 (1978);ADSCrossRefGoogle Scholar
  28. 9b.
    G.’t Hooft, Comm. Math. Phys. 81:267 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 9c.
    T. Eguchi and R. Nakayama, Phys. Lett. 122B:59 (1983);MathSciNetADSGoogle Scholar
  30. 9d.
    J. Patera and H. Zassenhaus, J. Math. Phys. 22:665 (1988).MathSciNetADSCrossRefGoogle Scholar
  31. 9e.
    Also see: V. Rittenberg and D. Wyler, Nucl. Phys. B139:189 (1978).MathSciNetADSCrossRefGoogle Scholar
  32. 10.
    D. Fairlie, to appear in the proceedings of Strings 89, Texas A&M. Google Scholar
  33. 11.
    D. Fairlie, P. Fletcher, and C. Zachos, Durham preprint /DTP/89/35.Google Scholar
  34. 12.
    M. Saveliev and A. Vershik, Serpukhov preprint IHEP-89–69, 1989.Google Scholar
  35. 13a.
    E. Floratos, J. Iliopoulos, and G. Tiktopoulos, Phys. Lett. 217B:285 (1989).MathSciNetADSGoogle Scholar
  36. 13b.
    Also see: B. de Wit, J. Hoppe, and H. Nicolai, Nucl. Phys. 305 [FS23]:545 (1988);ADSCrossRefGoogle Scholar
  37. 13c.
    E. Bergshoeff, E. Sezgin, Y. Tanii, and P. Townsend, Trieste preprint IC/88/186.Google Scholar
  38. 14a.
    A. Schild, Phys. Rev. D16:1722 (1977)ADSGoogle Scholar
  39. 14b.
    T. Eguchi, Phys. Rev. Lett. 44:126 (1980).ADSCrossRefGoogle Scholar
  40. 15.
    S. Rajeev, Phys. Lett. 209B:53 (1988).MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Cosmas Zachos
    • 1
  1. 1.High Energy Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations