Hidden Symmetries of Strings and Their Relevance for String Quantization

  • K. Pohlmeyer
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

The relation between the Nambu-Goto theory of closed bosonic strings and integrable systems is made precise. The complete set of observable symmetries of the classical Nambu-Goto theory is identified, the Poisson-algebra of the corresponding conserved charges is analyzed and the loop wave equation of the Nambu-Goto theory is interpreted as a representation-condition for the symmetry algebra. Further, the WKB quantization of the conserved charges is discussed and consistency conditions for the exact quantization are given.

Keywords

Alla 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Pohlmeyer: “The Invariant Charges of the Nambu-Goto Theory in WKB-Approximation: Renormalization” Commun.Math. Phys. 105, 629 (1986)MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    K. Pohlmeyer: “A Group-Theoretical Approach to the Quantization of the Free Relativistic Closed String” Phys. Lett. 119B, 100 (1982)MathSciNetADSGoogle Scholar
  3. [3]
    K. Pohlmeyer, K.-H. Rehren: “The Invariant Charges of the Nambu-Goto Theory: Their Geometric Origin and Their Completeness” Commun. Math. Phys. 114, 177 (1986)MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D.J. Gross: “High-Energy Symmetries in String Theory” Phys. Rev. Lett. 60, 1229 (1988)MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K. Pohlmeyer, K.-H. Rehren: “Algebraic Properties of the Invariant Charges of the Nambu-Goto Theory” Commun. Math. Phys. 105, 593 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    K. Pohlmeyer: “Solution of the Constraints for Tensors Generated by Iterated Integrals” Linear Alg.Appl. 118, 11 (1989)MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    K. Pohlmeyer: “Description of the Poisson Algebra Formed by the Invariant Charges of the Nambu-Goto Theory of Closed Strings Moving in (1+2)-dimensional Minkowski Space” in preparationGoogle Scholar
  8. [8]
    K. Pohlmeyer: “The Poisson Algebra of the Invariant Charges of the Nambu-Goto Theory: Casimir Elements” Commun. Math. Phys. 114, 351 (1988)MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K. Pohlmeyer, K.-H. Rehren: “The Algebra Formed by the Invariant Charges of the Nambu-Goto Theory: Identification of a Maximal Abelian Subalgebra” Commun. Math. Phys. 114, 55 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    M. Lüscher, K. Symanzik, P. Weisz: “Anomalies of the Free Loop Wave Equation in the WKB-Approximation” Nucl.Phys. B173, 365 (1980)ADSCrossRefGoogle Scholar
  11. [11]
    D.B. Fairlie, J. Nuyts, CK. Zachos: “Construction of Classical Virasoro Algebras as SU(1,1) Extensions” Phys. Lett. B202, 320 (1988)MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • K. Pohlmeyer
    • 1
  1. 1.Fakultät für PhysikUniversität FreiburgFreiburgGermany

Personalised recommendations