Advertisement

Beyond Conformal Field Theory

  • Philip Nelson
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

This is an account of some recent work done with H.S. La [1][2], based ultimately on the work of Fischler and Susskind [3] and Polchinski [4].

Keywords

Riemann Surface Conformal Invariance Conformal Field Theory Bosonic String String Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.S. La and P. Nelson, “Unambiguous fermionic string amplitudes,” Phys. Rev. Lett. 63 (1989) 24.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    H.S. La and P. Nelson, “Effective field equations for fermionic strings,” UPR-0391T=BUHEP-89–9.Google Scholar
  3. [3a]
    W. Fischler and L. Susskind, “Dilation tadpoles, string condensates, and scale invariance, I; II,” Phys. Lett. 171B (1986) 383;MathSciNetADSGoogle Scholar
  4. [3b]
    W. Fischler and L. Susskind, “Dilation tadpoles, string condensates, and scale invariance, I; II,” Phys. Lett. 173B (1986) 262.MathSciNetADSGoogle Scholar
  5. [4]
    J. Polchinski, “Factorization of bosonic string amplitudes,” Nucl. Phys. B307 (1988) 61.MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    I. Frenkel, H. Garland, and G. Zuckerman, Proc. Nat. Acad. Sci USA 83 (1986) 8442.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [6]
    P. Nelson, “Covariant insertions of general vertex operators,” Phys. Rev. Lett. 62 (1989) 993.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Philip Nelson
    • 1
  1. 1.Physics DepartmentUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations