Geometrical Aspects of Solvable Two Dimensional Models

  • K. Tanaka
Part of the NATO ASI Series book series (NSSB, volume 245)


It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e. when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggtests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra.


Central Charge Scalar Curvature Poisson Bracket Conformal Field Theory Compact Riemann Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    H. Bohr, B. Hou, and S. Saito, Nuovo Cimento A 84, 237 (1984);MathSciNetADSCrossRefGoogle Scholar
  2. 1b.
    K. Tanaka, ibid. 93, 63 (1986).ADSCrossRefGoogle Scholar
  3. 2.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).Google Scholar
  4. 3a.
    N.K. Mishra and K. Tanaka, Phys. Rev. D 36, 3722 (1987);MathSciNetADSCrossRefGoogle Scholar
  5. 3b.
    L. Dolan, ibid. 15, 2337 (1977).MathSciNetADSCrossRefGoogle Scholar
  6. 4.
    L.L. Chau, in proceeding of Seminare de Mathématique, Montreal, 1985 (unpublished).Google Scholar
  7. 5.
    M. Crampin, F.A.E. Pirani and D.C. Robinson, Lett. Math. Phys. 2, 15 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 6.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Phys. Rev. Lett. 31, 125 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 7.
    K. Tanaka, J. Math. Phys. 30, 172 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 8.
    R.M. Miura, J. Math. Phys. 9, 1202 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 9.
    L.P. Eisenhart, Riemannian Geometry, (Princeton University Press, Princeton, 1949).MATHGoogle Scholar
  12. 10.
    M. Green, J. Schwarz and E. Witten, Superstring Theory, (Cambridge University Press, 1986).Google Scholar
  13. 11.
    O. Alvarez, Nucl. Phys. B216, 125 (1983).ADSCrossRefGoogle Scholar
  14. 12.
    W. Abikoff, The Real Analytic Theory of Techmüller Space (Springer-Verlag New York, 1980).Google Scholar
  15. 13.
    K. Tanaka, New Theories in Physics, World Scientific, Singapore, 1988.Google Scholar
  16. 14a.
    J.L. Gervais, Phys. Lett. 160B, 277 (1985);MathSciNetADSGoogle Scholar
  17. 14b.
    J.L. Gervais, ibid. 160B, 279 (1985).MathSciNetADSGoogle Scholar
  18. 15.
    R. Sasaki and I. Yamanaka, in Proceedings of the “Conformal Field Theory and Solvable Lattice Models”, Nagoya University, 1987.Google Scholar
  19. 16.
    B.A. Dubrovin, V.B. Matveev and S.P. Novikov, Usp. Math. Nank 31, 55 (1976).MathSciNetMATHGoogle Scholar
  20. 17.
    C.S. Gardner, J. Math. Phys. 12, 1548 (1971).ADSMATHCrossRefGoogle Scholar
  21. 18.
    P.G. Drazin and R.S. Johnson, “Solitons: an introduction” (Cambridge University Press, Cambridge, England, 1989).MATHCrossRefGoogle Scholar
  22. 19.
    K. Tanaka, The Ohio State University preprint.Google Scholar
  23. 20.
    M. Omote et al, Phys. Rev. 35, 2423 (1987).MathSciNetADSGoogle Scholar
  24. 21.
    C. Zachos, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • K. Tanaka
    • 1
  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations