Monodromy Properties of Conformal Field Theories and Quantum Groups

  • Paolo Valtancoli
Part of the NATO ASI Series book series (NSSB, volume 245)


Recently a growing interest in extracting new results from 2D conformai field theories (CFT) going away from criticality [21,22] has motivated the study of the connection between solvable conformai invariant models and the condition of integrability in 2D, the Yang-Baxter equation.


Quantum Group Vertex Operator Conformal Block Operator Product Expansion Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belavin, A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformai symmetry in two dimensional quantum field theory, Nucl. Phys. B 241, 33 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247, 83 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Moore, G., Seiberg, N.: Polynomial equation for rational conformai field theories, Phys. Lett. B 212, 451 (1988)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Witten E.: Quantum field theory and the Jones polynomial. To appear in the Proc. of the IAMP Congress, Swansea, July, 1988Google Scholar
  5. 5.
    Verlinde, E.: Fusion rules and modular transformations in 2d conformai field theory, Nucl. Phys. B 300, 360 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Brustein, R., Yankielowicz, S., Zuber, J.-B.: Factorization and selection rules of operator product algebras in conformai field theory, TAUP-1647–88Google Scholar
  7. 7.
    Tsuchiya, A., Kanie,Y.: Vertex operators in the conformai field theory on P1 and monodromy representations of the braid group: Conformai field theory and solvable lattice models. Adv. Stud. Pure Math. 16, 297 (1988)MathSciNetGoogle Scholar
  8. 8.
    Drinfeld, V.: Quantum Groups: Proc. at the Intl. Cong, of Math. 1986, 798Google Scholar
  9. 9.
    Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra U q (sl(2)), q-orthogonal polynomials and invariants of links, LOMI preprint E-9–88Google Scholar
  10. 10.
    Alvarez-Gaume’ L., Gomez C, Sierra G.: Hidden quantum symmetries in rational conformai field theories, Nucl. Phys. B319 (1989), 155MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Dotsenko V.S., Fateev V.A., Conformai algebra and multipoint correlation functions in 2d statistical models, Nucl. Phys. B240 (1984) 312; Four point correlation functions and the operator algebra in the 2d conformai invariant theories with the central charge c < 1,MathSciNetADSCrossRefGoogle Scholar
  12. 11a.
    Dotsenko V.S., Fateev V.A., Conformai algebra and multipoint correlation functions in 2d statistical models, Nucl. Phys. B251 (1985) 691;MathSciNetADSCrossRefGoogle Scholar
  13. 11b.
    Dotsenko V.S., Fateev V.A., Conformai algebra and multipoint correlation functions in 2d statistical models, Phys. Lett. B 154 (1985) 291MathSciNetADSCrossRefGoogle Scholar
  14. 12.
    Faddeev L.D., Reshetikhin N. Yu., Takhtajan L.A.: Quantization of Lie groups and Lie algebras, LOMI preprint E-14–87Google Scholar
  15. 13.
    Valtancoli P., Phd thesis: Simmetrie quantistiche nascoste in teorie di gauge e conformi, Pisa University (1988)Google Scholar
  16. 14.
    Kato M., Valtancoli P., in preparationGoogle Scholar
  17. 15.
    Feigin B.L., Fuks D.B., Verma modules over the Virasoro algebra, Funktsional’nyi Analiz i ego Prilozheniya 17, NO. 3 (1983), 91–92MathSciNetMATHGoogle Scholar
  18. 16.
    Gepner D., Witten E.: String theory on a group manifold, Nucl. Phys. B 278 (1986), 493MathSciNetADSCrossRefGoogle Scholar
  19. 17.
    Connes A., Cyclic cohomology and non commutative differential geometry, Proc. Intl. cong. Math., Berkeley (1986)Google Scholar
  20. 18.
    Pasquier V., Saleur H.: Symmetries of the XXZ chain and quantum SU(2), to be published in Les HouchesGoogle Scholar
  21. 19.
    Zuber J.B.: Conformai field theories, Coulomb gas picture and integrable models, Lectures given at Les Houches Summer School on particle Physics, (1988)Google Scholar
  22. 20.
    Jimbo M.: A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63MathSciNetADSMATHCrossRefGoogle Scholar
  23. 21.
    Eguchi T., Yang S.K.: Deformations of conformai field theories and soliton equations, Phys. Lett. B 224 (1989), 373MathSciNetADSCrossRefGoogle Scholar
  24. 22.
    Zamolodchikov A.B., JETP Lett. 43 (1986), 730MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Valtancoli
    • 1
  1. 1.Physics DepartmentLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations