Chiral Gauge Field Theory in Two Dimensions

  • John Quackenbush
Part of the NATO ASI Series book series (NSSB, volume 245)


Chiral gauge field theory in two space-time dimensions, and in particular, the study of the anomalies which arise in such theories, has been the basis for a number of interesting results in recent years. These results are summarized for Abelian gauge field theory and analogous results are presented for non-Abelian field theory.


Gauge Transformation Gauge Field Dirac Fermion World Sheet Chiral Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241 (1984) 333;MathSciNetADSCrossRefGoogle Scholar
  2. [1a]
    J. L. Cardy, Nucl. Phys. B240 (1984) 514;ADSCrossRefGoogle Scholar
  3. [1b]
    D. Friedan, Z. Qiu and S. Shenkar, Phys. Rev. Lett. 52 (1987) 1575;ADSCrossRefGoogle Scholar
  4. [1c]
    D. Friedan and S. Shenkar, Nucl. Phys. B281 (1987) 509;ADSCrossRefGoogle Scholar
  5. [1d]
    R. Dijkgraff, E. Verlinde and H. Verlinde, Comm. Math. Phys. 115 (1988) 649, and references therein.MathSciNetADSCrossRefGoogle Scholar
  6. [2]
    E.T. Tomboulis, Phys. Lett. 198 B (1987) 165;Google Scholar
  7. [2a]
    M. Porrati and E.T. Tomboulis, Nucl. Phys. B315 (1989) 615.MathSciNetADSCrossRefGoogle Scholar
  8. [3]
    D.Z. Freedman and K. Pilch, Phys. Lett. 213 B (1988) 331; Preprint CPT#1701 (1989).MathSciNetGoogle Scholar
  9. [4]
    S. Coleman, Phys. Rev. D11 (1975) 2088.ADSGoogle Scholar
  10. [5]
    S. Mandelstam, Phys. Rev. D11 (1975) 3026.MathSciNetADSGoogle Scholar
  11. [6]
    E. Witten, Comm. Math. Phys. 92 (1984) 455.MathSciNetADSMATHCrossRefGoogle Scholar
  12. [7]
    L. Fadeev, Phys. Lett. 145 B (1984) 81; L. Fadeev and S. Shatashvili, Phys. Lett. 167 B.MathSciNetGoogle Scholar
  13. [8]
    K. Harada and I. Tsutsui, Phys. Lett. 183 B (1987) 311.Google Scholar
  14. [9]
    A.M. Polyakov and P.B. Wiegmann, Phys. Lett. 131 B (1983) 121;MathSciNetGoogle Scholar
  15. [9a]
    A.M. Polyakov and P.B. Wiegmann, Phys. Lett. 141 B (1984) 223.MathSciNetGoogle Scholar
  16. [10]
    E. Witten, Nucl. Phys. B223 (1983) 422.MathSciNetADSCrossRefGoogle Scholar
  17. [11]
    O. Alvarez, Nucl. Phys. B238 (1984) 61.ADSCrossRefGoogle Scholar
  18. [12]
    J. Wess and B. Zumino, Phys. Lett. 37 B (1971) 95.MathSciNetADSGoogle Scholar
  19. [13]
    J. Schwinger, Phys. Rev. 128 (1962) 2425.MathSciNetMATHGoogle Scholar
  20. [14]
    R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 54 (1985) 1219.ADSMATHCrossRefGoogle Scholar
  21. [15]
    K. D. Rothe, Nucl. Phys. B269 (1986) 269.MathSciNetADSCrossRefGoogle Scholar
  22. [16]
    J. Quackenbush, Preprint UCLA/89/TEP/23 (1989).Google Scholar
  23. [17]
    K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195;ADSCrossRefGoogle Scholar
  24. [17a]
    K. Fujikawa, Phys. Rev. Lett. 44 (1980) 1733;MathSciNetADSCrossRefGoogle Scholar
  25. [17b]
    K. Fujikawa, Phys. Rev. D21 (1980) 2824;MathSciNetGoogle Scholar
  26. [17c]
    K. Fujikawa, Phys. Rev. D22 (1980) 1499;MathSciNetADSGoogle Scholar
  27. [17d]
    K. Fujikawa, Phys. Rev. D23 (1981) 2262;MathSciNetADSGoogle Scholar
  28. [17e]
    K. Fujikawa, Phys. Rev. D31 (1985) 341.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John Quackenbush
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations