Advertisement

Away from Criticality: Some Results from the S Matrix Approach

  • Giuseppe Mussardo
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

In two dimensions, conformai invariance provides a natural way to classify the universality classes for critical phenomena [1]. It is of growing interest to extend the Conformai Field Theories (CFT) away from criticality to reach a complete understanding of the scaling region around the fixed points. Zamolodchikov [2] found that particular deformations of the CFT preserve the integrability of the models and the corresponding massive field theories can be described by a factorizable S-matrix. The 5-matrix of the three-state Potts model [3] and the S-matrix of the Ising model in a magnetic field [2] are the first examples of this approach. The hidden E 8 symmetry of Ising model is responsible for the rich structure of the S-matrix in the latter case. Recently, other models have been discussed: the 5-matrix of non-unitary Yang-Lee edge singularity [4] and the S-matrix of the thermal perturbation of the tricritical Ising model [5]. P. Christe will discuss the latter model, expecially its hidden E 7 symmetry, in his talk [6].

Keywords

Ising Model Dynkin Diagram Conformal Field Theory Thermal Perturbation Coxeter Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Conformal Invariance and applications to statistical mechanics, C. Itzykson, H. Saleur, and J.B. Zuber, Eds. World Scientific, and references therein.Google Scholar
  2. [2]
    A.B. Zamolodchikov, Integrable field theory form conformai field theory, Proc. of the Taniguchi Symposium, Kyoto 1888, to appear in Advanced Studies in Pure Mathematics. Google Scholar
  3. [3]
    A.B. Zamolodchikov, Int.Journ.Mod.Phys. A3(1988)743.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.L. Cardy, G. Mussardo, S-matrix of the Yang-Lee Edge Singularity in Two Dimensions, UCSBTH-89–11 to appear in Phys.Lett. B.Google Scholar
  5. [5]
    P. Christe and G. Mussardo Integrable systems away from criticality: the Toda field theory and S-matrix of the tricritical Ising mode/UCSBTH-89–19 submitted to Nucl.Phys.BGoogle Scholar
  6. [6]
    P. Christe and G. Mussardo S-matrices of the tricritical Ising model and Toda systems to appear in NATO Conference on Nonlinear Science: Physics and Geometry, Tahoe City 2–8 July 1989. Google Scholar
  7. [7]
    H.W. Braden, E. Corrigan, P.E. Dorey, R. Sasaki Extended Toda Field Theory and exact S-matrices UDCPT-89–23.Google Scholar
  8. [8]
    T.J. Hollowood and P. Mansfield, Oxford preprint 89–17P.Google Scholar
  9. [9]
    T. Eguchi, S.K. Yang, Deformation of Conformai Field Theories and Soliton Equations, RIFP-797 preprint.Google Scholar
  10. [10]
    A. LeClair Restricted Sine-Gordon Theory and the Minimal Conformai Series PUPT-1124Google Scholar
  11. [11]
    M. Henkel and H. Saleur Remarks on the Mass Spectrum of non Critical Coset Models from Toda Theories, Saclay preprint.Google Scholar
  12. [12]
    P. Christe, G. Mussardo in preparation. Google Scholar
  13. [13]
    A.V. Mikhailov, M.A. Olshanetsky, and A.M. Perelomov, Comm.Math.Phys. 79(1981)473.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G. Wilson, Ergod.Th.Dyn.Syst. 1(1981)361.MATHCrossRefGoogle Scholar
  15. [15]
    D. Olive, N. Turok, Nucl.Phys. B257[FS14](1985)277.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S.A. Bulgadaev, Phys.Lett. 96B (1980)151.MathSciNetADSGoogle Scholar
  17. [17]
    A.E. Arinshtein, V.A. Fateyev, and A.B. Zamolodchikov Phys.Lett. B87(1979)389.ADSGoogle Scholar
  18. [18]
    A.B. Zamolodchikov, Al.B. Zamolodchikov, Ann.Phys. 120 (1979), 253.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    E. Ogievetsky, P. Wiegmann, Phys.Lett. 168B (1986), 360.MathSciNetADSGoogle Scholar
  20. [20]
    E.I. Ogievetsky J.Phys.G: Nucl.Phys. 12(1986)L105.ADSCrossRefGoogle Scholar
  21. [21]
    M. Karowski, H.J. Thun, Nucl.Phys. B130 (1977), 295.ADSCrossRefGoogle Scholar
  22. [22]
    R. Koberle, J.A. Swieca, Phys.Lett. B86 (1979), 209.ADSGoogle Scholar
  23. [23]
    C.N. Yang and T.D. Lee, Phys.Rev. 87 (1952), 404.MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    T.D. Lee and C.N. Yang, Phys.Rev. 87 (1952), 410.MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    M.E. Fisher Phys.Rev.Lett. 40 (1978), 1610.ADSCrossRefGoogle Scholar
  26. [26]
    J.L. Cardy Phys.Rev.Lett. 54 (1985), 1354.MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    P.G. Freund, T.R. Klassen, E. Melzer S-Matrices for Perturbations of Certain Conformal Field Theories preprint EFI 89–29Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Giuseppe Mussardo
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Sez. di TriesteItaly

Personalised recommendations