Geometric Classification of Commutative Algebras of Ordinary Differential Operators

  • Motohico Mulase
Part of the NATO ASI Series book series (NSSB, volume 245)


The purpose of this paper is to give a geometric classification of all commutative algebras consisting of linear ordinary differential operators whose coefficients are scalar-valued functions.


Modulus Space Vector Bundle Line Bundle Commutative Algebra Algebraic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCa]
    J.L. Burchnall and T.W. Chaundy: Commutative ordinary differential operators, Proc. London Math. Soc. Ser. 2, 21 (1923) 420–440;MATHCrossRefGoogle Scholar
  2. [BCb]
    J.L. Burchnall and T.W. Chaundy: Commutative ordinary differential operators, Proc. Royal Soc. London Ser. A, 118 (1928) 557–583.ADSMATHCrossRefGoogle Scholar
  3. [F]
    G. Floquet: Sur la théorie des équations différentielles linéaires, Ann. Sci. de l’École Norm. Supér., 8 (1879) Suppl., 3–132.MathSciNetMATHGoogle Scholar
  4. [GDa]
    I.M. Gel’fand and L.A. Dikii: Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russ. Math. Surveys, 30 (1975) 77–113;MathSciNetADSMATHCrossRefGoogle Scholar
  5. [GDb]
    I.M. Gel’fand and L.A. Dikii: Fractional powers of operators and Hamiltonian systems, Func. Anal. Appl. 10 (1976) 259–273.CrossRefGoogle Scholar
  6. [K]
    I.M. Krichever: Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surveys 32 (1977) 185–214.MATHCrossRefGoogle Scholar
  7. [Ku]
    M. Kuga: Galois’ Dream, (translated by S. Addington from the Japanese text), Birkhäuser, to appear.Google Scholar
  8. [M1]
    M. Mulase: Algebraic geometry of soliton equations, Proc. Japan Acad. Ser. A, 59 (1983) 285–288.MathSciNetMATHCrossRefGoogle Scholar
  9. [M2]
    M. Mulase:: Cohomological structure in soliton equations and jacobian varieties, J. Diff. Geom. 19 (1984) 403–430.MathSciNetMATHGoogle Scholar
  10. [M3]
    M. Mulase: Category of vector bundles on algebraic curves and infinite dimensional Grassmannians, Intern. Journ. Math. 1 (1990) to appear.Google Scholar
  11. [Mum]
    D. Mumford: An algebro-geometric constructions of commuting operators and of solutions to the Toda lattice equations, Korteweg-de Vries equations and related non-linear equations, In Proc. Internat. Symp. on Alg. Geom., Kyoto 1977, Kinokuniya Publ. (1978) 115–153.Google Scholar
  12. [N]
    S.P. Novikov, ed.: Integrable systems, London Math. Soc. Lec. Notes Ser. 60, Cambridge Univ. Press (1981).Google Scholar
  13. [NMPZ]
    S.P. Novikov, S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov: Theory of solitons — The inverse scattering method, Consultants Bureau, New York (1984).Google Scholar
  14. [P]
    S. Pincherle: Memoire sur le calcul fonctionnel distributif, Math. Ann. 49 (1897) 325–382.MathSciNetMATHCrossRefGoogle Scholar
  15. [PW]
    E. Previato and G. Wilson: Vector bundles over curves and solutions of the KP equations, Proc. Symp. Pure Math. 49 (1989) 553–569.MathSciNetCrossRefGoogle Scholar
  16. [Sa]
    M. Sato: Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold, Kokyuroku, Res. Inst. Math. Sci., Kyoto Univ. 439 (1981) 30–46.Google Scholar
  17. [SN]
    M. Sato and M. Noumi: Soliton equations and universal Grassmann manifold (in. Japanese), Sophia Univ. Lec. Notes Ser. in Math. 18 (1984).Google Scholar
  18. [Sc]
    I. Schur: Über vertauschbare lineare Differentialausdrücke, Sitzungsber. der Berliner Math. Gesel. 4 (1905) 2–8.Google Scholar
  19. [SW]
    G.B. Segal and G. Wilson: Loop groups and equations of KdV type, Publ. Math. I.H.E.S. 61 (1985) 5–65.MathSciNetMATHGoogle Scholar
  20. [V]
    J.-L. Verdier: Equations differentielles algébriques, Séminaire de lÉcole Normale Supérieure 1979–82, Birkhäuser (1983) 215–236.Google Scholar
  21. [W]
    G. Wallenberg: Über die Vertauschbarkeit homogener linearer Differentialausdrücke, Archiv der Math. u. Phys., Drittle Reihe 4 (1903) 252–268.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Motohico Mulase
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA
  2. 2.Institute of Theoretical DynamicsUniversity of CaliforniaDavisUSA

Personalised recommendations