Quantum Bäcklund Transformations and Conformal Algebras

  • Thomas Curtright
Part of the NATO ASI Series book series (NSSB, volume 245)


A quantum Bäcklund transformation can provide a mapping from one realization of su(1,1), and any of its quantum deformations or Virasoro algebra extensions, to another. Nontrivial realizations can be related to trivial ones. Since the quantum transformation is not necessarily unitary, the two realizations can have different hermiticity properties when acting on arbitrary states. These general features are illustrated in detail using the Liouville field theory in 1+1 dimensions, and a simple potential model.


Unitary Transformation Canonical Transformation Free Field Cartan Subalgebra Quantum Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Rogers and W.F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, Inc., New York, 1982.MATHGoogle Scholar
  2. [2a]
    E. Braaten, T. Curtright, and C. Thorn, Phys. Lett. 118B (1982) 115;MathSciNetADSGoogle Scholar
  3. [2b]
    Ann. Phys. (NY) 147 (1983) 365.MathSciNetADSMATHCrossRefGoogle Scholar
  4. [3]
    T. Curtright and G. Ghandour, unpublished. Google Scholar
  5. [4]
    G. Ghandour, Phys. Rev. D35 (1987) 1289.Google Scholar
  6. [5]
    E. Braaten, T. Curtright, G. Ghandour, and C. Thorn, Phys. Rev. Lett. 51 (1983) 19; Ann. Phys. (NY) (1983).MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    T. Curtright, G. Ghandour, and T. McCarty, in preparation. Google Scholar
  8. [7]
    R. Jackiw, MIT 1989 preprint, CTP # 1703.Google Scholar
  9. [8a]
    L. Biedenharn, J. Nuyts, and N Straumann, Ann. Inst. H. Poincaré 3 (1965) 13;MathSciNetMATHGoogle Scholar
  10. [8b]
    J. Lanik, Nucl. Phys. B2 (1967) 263. Also see Chapter 18 inADSCrossRefGoogle Scholar
  11. [8c]
    B.G. Wybourne, Classical Groups for Physicists, John Wiley & Sons, Inc., New York, 1974.MATHGoogle Scholar
  12. [9]
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics; Nonrelativistic Theory, 3rd Edition, Pergamon Press, Inc., New York, 1977. See especially §18 and §35.Google Scholar
  13. [10a]
    V.S. Dotsenko and V.A. Fateev, Nucl. Phys. B240 (1984) 312,MathSciNetADSCrossRefGoogle Scholar
  14. [10b]
    V.S. Dotsenko and V.A. Fateev, Nucl. Phys.*ibid B251 (1985) 691,MathSciNetADSCrossRefGoogle Scholar
  15. [10c]
    V.S. Dotsenko and V.A. Fateev, Phys. Lett. 154B (1985) 291.MathSciNetADSGoogle Scholar
  16. [11]
    D.B. Fairlie, J. Nuyts, and CK. Zachos, Phys. Lett. B202 (1988) 320.MathSciNetADSGoogle Scholar
  17. [12a]
    V.G. Drinfel’d, Proc. Int. Congress of Mathematicians, Berkeley (1986) 798;Google Scholar
  18. [12b]
    M. Jimbo, Lett. Math. Phys. 10 (1985) 63;MathSciNetADSMATHCrossRefGoogle Scholar
  19. [12c]
    S.L. Woronowicz, Publ. R.I.M.S., Kyoto Univ. 23 (1987) 117.MathSciNetMATHCrossRefGoogle Scholar
  20. [13]
    A. Polychronakos, Florida preprint UFTP-88–5.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Thomas Curtright
    • 1
  1. 1.Department of PhysicsUniversity of MiamiCoral GablesUSA

Personalised recommendations