Conformal Field Theories and Category Theory

  • Ram Brustein
  • Yuval Ne’eman
  • Shlomo Sternberg
Part of the NATO ASI Series book series (NSSB, volume 245)


A relation between Conformal Field Theories and braided monoidal categories is established. The coherence theorem for these categories implies the existence of some fundamental relations obeyed by crossing matrices of Conformal Field Theories.


Vector Bundle Rooted Tree Conformal Block Operator Product Expansion Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Verlinde, Nucl. Phys. B300 (1988) 360.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    K. H. Rehren and B. Schroer, FU preprint.Google Scholar
  3. 3.
    G. Moore and N. Seiberg, Phys. Lett. B212 (1988) 451.MathSciNetADSGoogle Scholar
  4. 4.
    R. Brustein, S. Yankielowicz and J.B. Zuber, Nucl. Phys. B313 321.Google Scholar
  5. 5.
    G. Moore and N. Seiberg, Comm. Math. Phys. 123, 117Google Scholar
  6. 6.
    A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. B241 (1984) 333.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    V. S. Dotsenko and V. Fateev, Nucl. Phys. B240 (1984) 312.MathSciNetADSCrossRefGoogle Scholar
  8. 8a.
    S. S. Mac Lane, Rice Univ. Studies 49 (1963) 28.;MathSciNetGoogle Scholar
  9. 8b.
    see also G. M. Kelly. J. of Alg. 1 (1964) 397 andMATHCrossRefGoogle Scholar
  10. 8c.
    J. D. Stasheff, Trans. Am. Math. Soc. 108 (1963) 275.MathSciNetMATHCrossRefGoogle Scholar
  11. 9.
    R. Brustein, Y. Neeman and S. Sternberg, to appear in Isr. J. of Math.Google Scholar
  12. 10.
    A. Joyal and R. Street, Macquarie Math. Reports, 1986; P. Freyd and D. Yetter, Advances in Mathematics.Google Scholar
  13. 11.
    E. Corrigan, these proceedings.Google Scholar
  14. 12.
    S. Yankielowicz, Private communication; R. Brustein, Ph. D. Thesis, Tel Aviv Univ. (1988), UnpublishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ram Brustein
    • 1
  • Yuval Ne’eman
    • 2
  • Shlomo Sternberg
    • 3
  1. 1.Department of Physics, Theory GroupUniversity of TexasAustinUSA
  2. 2.Mortimer and Raymond Sackler Institute of Advanced StudiesTel Aviv UniversityTel AvivIsrael
  3. 3.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations