Advertisement

Classical and Quantum Calabi-Yau Manifolds

  • Rolf Schimmrigk
Part of the NATO ASI Series book series (NSSB, volume 245)

Abstract

It has been clear for some time now that not all compactification schemes used to construct consistent Heterotic String vacua are independent. This is particularly obvious in the case of Calabi-Yau manifold compactifications and the c = 9, N — 2 minimal superconformai tensor models. In two case studies [1] Gepner presented compelling evidence for the existence of a deep relation between exact models and Calabi-Yau manifolds (CYs). Gepner showed that not only do these two models have the same massless spectrum and exhibit the same discrete symmetries, but that the fields also transform in the same way under discrete symmetry transformations. Although somewhat indirect, this evidence lead Gepner to conjecture that all exact N = 2 superconformai models correspond to Calabi-Yau manifolds.

Keywords

Yukawa Coupling Chern Class Discrete Symmetry Current Algebra Euler Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rerences

  1. 1.
    D. Gepner, Phys.Lett.199B(1987) 380; String Theory on Calabi-Yau manifolds: The Three-Generation Case, PUPT preprint.MathSciNetADSGoogle Scholar
  2. 2.
    E.J.Martinec, Phys.Lett. 217B(1989)431.MathSciNetADSGoogle Scholar
  3. 3.
    B.R.Greene, C.Vafa and N.Warner, “Calabi-Yau Manifolds and Renormalization Group Flows”, HUTP-88/A047, preprint.Google Scholar
  4. 4a.
    A.B.Zamolodchikov, Sov.J.Phys. 44(1986)529MathSciNetGoogle Scholar
  5. 4b.
    [Yad.Fiz. 44 (1986)821].MathSciNetGoogle Scholar
  6. 5.
    D.A. Kastor, E.J. Martinec and S.H. Shenker, Nuc. L. Phys. B316(1989)590.MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    C. Vafa and N. Warner, Phys.Lett. 218B(1989)51.MathSciNetADSGoogle Scholar
  8. 7a.
    M. Lynker and R. Schimmrigk, Phys.Lett.208B(1988)216;MathSciNetADSGoogle Scholar
  9. 7b.
    ibid 215B(1988)681;MathSciNetADSGoogle Scholar
  10. 7c.
    C.A. Lütken and G.G. Ross, Phys.Lett 213B(1988)512.Google Scholar
  11. 8.
    R. Schimmrigk, “Heterotic RG Flow Fixed Points with Non-Diagonal Affine Invariants”, UTTG-13–89 preprint.Google Scholar
  12. 9.
    M. Lynker and R. Schimmrigk, preprint in preparation.Google Scholar
  13. 10a.
    E. Witten, Nucl.Phys. B268(1986)79.MathSciNetADSCrossRefGoogle Scholar
  14. 10b.
    M. Dine and N. Seiberg, Phys.Rev.Lett. 57(1986)2625.MathSciNetADSCrossRefGoogle Scholar
  15. 11a.
    J. Distler and B.R. Greene, Nucl.Phys, B309(1988) 295;MathSciNetADSCrossRefGoogle Scholar
  16. 11b..
    D. Gepner, Nucl.Phys. B311(1988)191;MathSciNetADSCrossRefGoogle Scholar
  17. 11c.
    G. Sotkov and M. Stanishkov, Phys.Lett. 215B(1988)674.MathSciNetADSGoogle Scholar
  18. 11d.
    S. Cordes and Y. Kikuchi, “Correlation Functions and Selection Rules in Minimal N=2 String Compactification”, CPT-TAMU-92/88 preprint;Google Scholar
  19. 11e.
    B. R. Greene, C.A. Lütken and G.G. Ross, “Couplings in the Heterotic SuperconformaiThree Generation Model”, HUTP-88/A062, Nordita-89/8P preprint.Google Scholar
  20. 12.
    R. Schimmrigk, “Heterotic (2,2)-Vacua: Manifold Theory and Exact Results”, UTTG-32–89 preprint.Google Scholar
  21. 13.
    R.Schimmrigk, Phys.Lett. 193B(1987)175MathSciNetADSGoogle Scholar
  22. 14a.
    I. Dolgachev, in: Group actions and vector fields, ed. J. Carrell, Springer LNM, Vol. 956 (Springer, Berlin);Google Scholar
  23. 14b.
    A. Dimca, J.Reine Ang. Math. 366(1986)184.MathSciNetMATHGoogle Scholar
  24. 15.
    P.Candelas, A.Dale, C.A.Liitken and R.Schimmrigk, Nucl.Phys. B298 (1988)493.ADSCrossRefGoogle Scholar
  25. 16.
    S.-S.Roan and S.-T.Yau, Acta Math. Sinica, (New Series) 3(1987)256.MathSciNetMATHCrossRefGoogle Scholar
  26. 17.
    F.Hirzebruch, Math.Ann. 126(1953)1.MathSciNetMATHCrossRefGoogle Scholar
  27. 18a.
    Y.Kazama and H.Suzuki, Phys.Lett 216B(1989)112;MathSciNetADSGoogle Scholar
  28. 18b.
    Nucl Phys. B321(1989)232.MathSciNetADSCrossRefGoogle Scholar
  29. 19.
    C.T.C.Wall, Inv.Math. 1(1966)355.ADSCrossRefGoogle Scholar
  30. 20a.
    R.Hartshorne, Algebraic Geometry (Springer, Berlin, 1977)MATHCrossRefGoogle Scholar
  31. 20b.
    P.Griffiths and J.Harris, Principles of Algebraic Geometry (Wiley-Interscience, New York, 1978)MATHGoogle Scholar
  32. 21.
    D.Gepner, Nucl.Phys. B296(1988)757.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Rolf Schimmrigk
    • 1
  1. 1.Theory Group, Department of PhysicsUniversity of TexasAustinUSA

Personalised recommendations