Gauged WZW Models and the Coset Construction of Conformal Field Theories

  • Dimitra Karabali
Part of the NATO ASI Series book series (NSSB, volume 245)


The gauged Wess-Zumino-Witten models are shown to be conformal field theories providing field theoretic realizations for the Goddard-Kent- Olive coset construction G/H. In particular the conformai charge of the model coincides with the one obtained in the GKO construction. The physical spectrum of the gauged WZW model is analyzed in the BRST framework. We discuss how the physical states implement unitary representations of the coset Virasoro algebra. When H is the Cartan subalgebra of G the BRST invariant current operators (the physical currents) are shown to be the parafermionic currents.


Unitary Representation Conformal Field Theory Ghost Number BRST Transformation Creation Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Goddard, A. Kent and D. Olive, Phys. Lett. B152 (1985) 88;MathSciNetADSGoogle Scholar
  2. 1a.
    P. Goddard, A. Kent and D. Olive, Comm. Math. Phys. 103 (1986) 105;MathSciNetADSMATHCrossRefGoogle Scholar
  3. 1b.
    P. Goddard and D. Olive, Int.J.Mod.Phys.Al (1986) 303.Google Scholar
  4. 2.
    D. Friedan, Z. Qiu, and S. Shenker, Phys.Rev.Lett.52 (1984) 1575;MathSciNetADSCrossRefGoogle Scholar
  5. 2a.
    D. Friedan, Z. Qiu, and S. Shenker, Phys.Lett. B151 (1985) 37;MathSciNetADSGoogle Scholar
  6. 2b.
    V.A. Fateev and A.B. Zamolockhikov, Nucl.Phys. B280 (1987) 644;ADSCrossRefGoogle Scholar
  7. 2c.
    A.B. Zamolodchikov, Theor.Math.Phys. 65 (1986) 1205;CrossRefGoogle Scholar
  8. 2d.
    J. Bagger, D. Nemeschansky, and S. Yankielowicz, Phys.Rev.Lett.60 (1988) 389;MathSciNetADSCrossRefGoogle Scholar
  9. 2e.
    F. Ravanini, Mod.Phys.Lett.A3 (1988) 397;MathSciNetADSGoogle Scholar
  10. 2g.
    M.R. Douglas, CALT-68–1453 (1987);Google Scholar
  11. 2h.
    D. Kastor, E. Martinec, and Z. Qiu, Phys. Lett. B200 (1988) 434;MathSciNetADSGoogle Scholar
  12. 2i.
    P. Goddard and A. Schwimmer, Phys.Lett. B206 (1988) 62;MathSciNetADSGoogle Scholar
  13. 2j.
    P. Bowcock and P. Goddard, Nucl. Phys. B305 [FS23] (1988) 685; M.B. Halpern, LBL-26297/UCB-PTH-88/30 preprint and references therein.MathSciNetADSCrossRefGoogle Scholar
  14. 3.
    V.A. Fateev and A.B. Zamolodchikov, Sov.Phys. JETP 62 (1985) 215;MathSciNetGoogle Scholar
  15. 3a.
    ibid. 63 (1986) 913;Google Scholar
  16. 3b.
    D. Gepner and Z. Qiu, Nucl.Phys. B285 [FS19] (1987) 423;MathSciNetADSCrossRefGoogle Scholar
  17. 3c.
    D. Gepner, Nucl.Phys. B290 (1987) 10;MathSciNetADSCrossRefGoogle Scholar
  18. 3d.
    E.B. Kiritsis, Mod. Phys. Lett. A4 (1989) 437;MathSciNetADSGoogle Scholar
  19. 3e.
    G. Dunne, I. Halliday and P. Suranyi MIT-CTP 1663 (1988).Google Scholar
  20. 4.
    A. Kent, Phys. Lett. 173B (1986) 413;MathSciNetADSGoogle Scholar
  21. 4a.
    E. Guadagnini, M. Martellini and M. Mintchev, Phys. Lett. B194 (1987) 69;MathSciNetADSGoogle Scholar
  22. 4b.
    K. Bardakçi, E. Rabinovici, and B. Säring, Nucl. Phys. B299 (1988) 151.ADSCrossRefGoogle Scholar
  23. 5.
    W. Nahm, UCD-88–02 preprint; P. Bowcock, Nucl.Phys.B316 (1989) 80.Google Scholar
  24. 6.
    K. Gawedzki and A. Kupiainen, Phys.Lett. B215 (1988) 119;MathSciNetADSGoogle Scholar
  25. 6a.
    K. Gawedzki and A. Kupiainen, Nucl. Phys. B320 (1989) 625.MathSciNetADSCrossRefGoogle Scholar
  26. 7.
    D. Karabali, Q-Han Park, H.J. Schnitzer and Z. Yang, Phys.Lett. B216 (1989) 307;MathSciNetADSGoogle Scholar
  27. 7..
    H.J. Schnitzer, Brandeis preprint BRX TH-254 (1988).Google Scholar
  28. 8.
    D. Karabali and H.J. Schnitzer, Brandeis preprint BRX TH-267 (1989), to appear in Nucl.Phys.B.Google Scholar
  29. 9.
    E. Witten, Comm.Math.Phys.92 (1984) 455.MathSciNetADSMATHCrossRefGoogle Scholar
  30. 10.
    V. Knizhnik and A.B. Zamolodchikov, Nucl.Phys. B247 (1984) 83;MathSciNetADSCrossRefGoogle Scholar
  31. 10a..
    D. Gepner and E. Witten, Nucl. Phys. B278 (1986) 493.MathSciNetADSCrossRefGoogle Scholar
  32. 11..
    A.M. Polyakov and P.B. Wiegmann, Phys.Lett. 141B (1984) 223.MathSciNetADSGoogle Scholar
  33. 12.
    W. Nahm, in Superstrings, supergravity and unified theories, eds. G. Furlan et al (World Scientific, 1986);Google Scholar
  34. 12a.
    M.K. Fung, Mod. Phys. Lett. A4 (1989) 675;MathSciNetADSGoogle Scholar
  35. 12b.
    A.M. Polyakov, Les Houches Lectures 1989.Google Scholar
  36. 13.
    T. Kugo and I. Ojima, Suppl.Prog.Theor.Phys. 66 (1979) 1;ADSCrossRefGoogle Scholar
  37. 13a.
    M. Kato and K. Ogawa, Nucl.Phys. B212 (1983) 443.ADSCrossRefGoogle Scholar
  38. 14.
    H. Aratyn, these proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Dimitra Karabali
    • 1
  1. 1.Department of PhysicsBrandeis UniversityWalthamUSA

Personalised recommendations