Aspects of Perturbed Conformal Field Theory, Affine Toda Field Theory and Exact S-Matrices

  • H. W. Braden
  • E. Corrigan
  • P. E. Dorey
  • R. Sasaki
Part of the NATO ASI Series book series (NSSB, volume 245)


Recently, Zamolodchikov has suggested a way of exploring the properties of the Ising model in a background magnetic field, i.e. away from criticaliy(1).


Dynkin Diagram Conformal Field Theory Light Particle Background Magnetic Field Coset Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    A. B. Zamoloddchikov, Integrable Field Theory from Conformai Field Theory, Proceedings of the Taniguchi Symposium, Kyoto (1988)Google Scholar
  2. 1b.
    A. B. Zamoloddchikov —, RAL preprint 89–001.Google Scholar
  3. 1c.
    A. B. Zamoloddchikov, *)—, JETP Letters 46 (1987) 161ADSGoogle Scholar
  4. 1d.
    A. B. Zamoloddchikov, *)—, Int. J. Mod. Phys. A3 (1988) 743ADSGoogle Scholar
  5. 2.
    T. J. Hollowood and P. Mansfield, Phys. Letts. B226 (1989) 73MathSciNetADSGoogle Scholar
  6. 3.
    H. W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Durham preprint UDCPT 89–23, to appear in Physics Letters B.Google Scholar
  7. 4.
    P. Christe and G. Mussardo, Santa Barbara preprint (revised) UCSBTH 89–19Google Scholar
  8. 5.
    S. Helgason, Differential geometry, Lie groups, and symmetric spaces (Academic Press Inc. 1978)MATHGoogle Scholar
  9. 6.
    P. Bowcock and P. Goddard, Nucl. Phys B285 (1987) 651MathSciNetADSCrossRefGoogle Scholar
  10. 7.
    A. B. Zamolodchikov, Al. B. Zamolodchikov, Ann. Phys. 120 (1979) 253, and references therein.MathSciNetADSCrossRefGoogle Scholar
  11. 8.
    A. N. Leznov and M. V. Saveliev, Group methods for the integration of nonlinear dynamical systems (Moscow Nauka 1985)MATHGoogle Scholar
  12. 9a.
    J-L. Gervais and A. Neveu, Nucl. Phys. B224 (1983) 329MathSciNetADSCrossRefGoogle Scholar
  13. 9b.
    P. Mansfield, Nucl. Phys B222 (1983) 419MathSciNetADSCrossRefGoogle Scholar
  14. 9c.
    E. Braaten, T. Curtright, G. Ghandour and C. Thorn, Phys. Letts. B125 (1983) 301ADSGoogle Scholar
  15. 10.
    G. Wilson, Ergod. Th. and Dynam. Sys. 1 (1981) 361MATHCrossRefGoogle Scholar
  16. 11a.
    A. V. Mikhailov, M. A. Olshanetsky and A. M. Perelomov, Comm. Math. Phys. 79 (1981) 473MathSciNetADSCrossRefGoogle Scholar
  17. 11b.
    D. I. Olive and N. Turok, Nucl. Phys. B215[FS7] (1983) 470MathSciNetADSCrossRefGoogle Scholar
  18. 12.
    A. Ocneanu, Lectures to this conference.Google Scholar
  19. 13.
    C. J. Goebel, Prog. Theor. Phys. Suppl. 86 (1986) 261ADSCrossRefGoogle Scholar
  20. 14.
    A. E. Arinshtein, V. A. Fateev and A. B. Zamolodchikov, Phys. Letts. B87 (1979) 389ADSGoogle Scholar
  21. 15.
    R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, The Analytic S-matrix, (Cambridge University Press 1966)MATHGoogle Scholar
  22. 16.
    R. Köberle and J. A. Swieca, Phys. Letts. B86 (1979) 209ADSGoogle Scholar
  23. 17.
    S. Coleman and H. Thun, Comm. Math. Phys. 61 (1978) 31MathSciNetADSCrossRefGoogle Scholar
  24. 18.
    S. Coleman, Aspects of Symmetry, (Cambridge University Press 1985)MATHCrossRefGoogle Scholar
  25. 19.
    L. D. Faddeev and V. E. Korepin, Theor. Mat. Fiz. 25 (1975) 147MathSciNetGoogle Scholar
  26. 20.
    M. Karowski and H.-J. Thun, Nucl. Phys. B130 (1977) 295ADSCrossRefGoogle Scholar
  27. 21.
    H. Yoshii, Phys. Letts. B223 (1989) 353MathSciNetADSGoogle Scholar
  28. 22.
    T. Eguchi and S-K. Yang, Phys. Letts. B224 (1989) 373MathSciNetADSGoogle Scholar
  29. 23a.
    A. Cappelli, C. Itzykson and J-B Zuber, Comm. Math. Phys. 113 (1987) 1MathSciNetADSMATHCrossRefGoogle Scholar
  30. 23b.
    V. I. Arnold, Catastrophe Theory (Springer-Verlag 1984)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. W. Braden
    • 1
  • E. Corrigan
    • 1
  • P. E. Dorey
    • 1
  • R. Sasaki
    • 1
  1. 1.Dept. Mathematical SciencesUniversity of DurhamDurhamEngland

Personalised recommendations