Non-Compact Current Algebras and Heterotic Superstring Vacua

  • Itzhak Bars
Part of the NATO ASI Series book series (NSSB, volume 245)


It has been shown that a four dimensional finite and consistent superstring theory [1] can be constructed by combining any 2-dimensional superconformai field theory with a central charge c=9 with a superstring propagating in flat 4-dimensional Minkowski space-time. Each distinct superconformai field theory corresponds to a possible vacuum state of the full string theory. For N=1 supersymmetry to emerge in this vacuum in 4-dimensions, an N=2 worldsheet supersymmetry is necessary [2]. Gepner has provided [3] a procedure for the construction of a heterotic superstring that satisfies the required properties including modular invariance by using the above ingredients.


Central Charge Supplementary Series Heterotic String Energy Momentum Tensor Discrete Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1a).
    M.B. Green and J.H. Schwarz, Nucl. Phys. B255 (1985) 92.MathSciNetADSGoogle Scholar
  2. (1b).
    D.J. Gross, J. Harvey, E.J. Martinec, and R. Rhom, Nucl.Phys. B256 (1985) 253.ADSCrossRefGoogle Scholar
  3. (2).
    T. Banks, L.J. Dixon, D. Friedan, and E. Martinec, Nucl.Phys. B299 (1988) 613.MathSciNetADSCrossRefGoogle Scholar
  4. (3a).
    D. Gepner, Nucl. Phys. B296 (1987) 757,MathSciNetADSGoogle Scholar
  5. (3a).
    D. Gepner, Phys. Lett 199B (1987) 380.MathSciNetADSGoogle Scholar
  6. (4).
    I. Bars, USC preprint, USC-89/HEP02, May 1989.Google Scholar
  7. (5).
    D. Gepner and E. Witten, Nucl.Phys. B278 (1986) 493.MathSciNetADSCrossRefGoogle Scholar
  8. (6a).
    M.B. Halpern, Phys.Rev. D4 (1971) 2398.ADSGoogle Scholar
  9. (6b).
    P. Goddard, A. Kent and D. Olive, Phys. Lett. 152B (1985) 88,MathSciNetADSGoogle Scholar
  10. (6c).
    P. Goddard, A. Kent and D. Olive, Comm. Math. Phys. 103 (1986) 105.MathSciNetADSMATHCrossRefGoogle Scholar
  11. (7).
    Y. Kazama and H. Suzuki, preprint UT-Komaba 88–8 (1988).Google Scholar
  12. (8).
    L. Dixon, M.E. Peskin and J. Lykken, SLAC-PUB-4884 (1989).Google Scholar
  13. (9a).
    P. Goddard and D. Olive, Int. J. Mod. Phys. A, 1 (1986) 303.MathSciNetADSMATHCrossRefGoogle Scholar
  14. (9b).
    D. Nemeshansky and S. Yankieolowicz, Phys. Rev. Lett. 54 (1985) 620.MathSciNetADSCrossRefGoogle Scholar
  15. (10a).
    V. Bargmann, Ann. Math. 48 (1947) 568MathSciNetMATHCrossRefGoogle Scholar
  16. (10a).
    V. Bargmann, Comm. Pure & Appl. Math. 14 (1961) 187.MathSciNetMATHCrossRefGoogle Scholar
  17. (11).
    F. Gursey and S. Orfanidis, Phys.Rev. D7 (1973) 2414.ADSGoogle Scholar
  18. (12).
    I. Bars and Z.J. Teng, to be published.Google Scholar
  19. (13).
    I. Bars, Lect. Applied Math. 21 (1983) 17.MathSciNetGoogle Scholar
  20. (14).
    M. Günaydin and C. Saclioglu, Comm. Math. Phys. 87 (1982) 159.MathSciNetADSMATHCrossRefGoogle Scholar
  21. (15a).
    A.M. Perelemov and V.S. Popov, Sov. J. Nucl. Phys. 3 (1966) 676Google Scholar
  22. (15a).
    A.M. Perelemov and V.S. Popov, Sov. J. Nucl. Phys. 5 (1967) 489.Google Scholar
  23. (16a).
    M.A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, 1964.Google Scholar
  24. (16b).
    I.M. Gelfand, M.I. Graev and N.Y. Vilenkin, Generalized Functions, Vol.5, N.Y. Academic Press 1968.Google Scholar
  25. (16c).
    I. Bars and F. Gursey, J. Math. Phys. 13 (1972) 131.MathSciNetADSMATHCrossRefGoogle Scholar
  26. (17).
    P. Goddard, W. Nahm and D. Olive, Phys. Lett. 160B (1985) 111.MathSciNetADSGoogle Scholar
  27. (18).
    M. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge Univ. Press (1987).MATHGoogle Scholar
  28. (19a).
    A. Cappelli, C. Itzykson and J.B. Zuber, Nucl. Phys. B280 (1987) 445.MathSciNetADSCrossRefGoogle Scholar
  29. (19a).
    D. Gepner and Z. Qiu, Nucl.Phys. B285 (1987) 423.MathSciNetADSCrossRefGoogle Scholar
  30. (20.
    C. A. Lutken and G. Ross, Phys. Lett. B213 (1988) 152.MathSciNetADSGoogle Scholar
  31. (21).
    I. Bars, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Itzhak Bars
    • 1
  1. 1.Physics DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations