New Kinematics (Statistics and Symmetry) in Low-Dimensional QFT with Applications to Conformal QFT2

  • B. Schroer
Part of the NATO ASI Series book series (NSSB, volume 245)


The concepts of field commutation relation, particle statistics and the origin of internal symmetries always have been considered as fundamental in quantum field theory. In the standard Lagrangian approach one usually starts with fields having Fermi- or Bose-statistics which carry an internal compact Lie-group symmetry (i.e. a subgroup of SU n for large enough n). These fields are then “coupled” in order to implement the idea of local interactions in accordance with the Einstein causality of observables. For the most interesting cases of strictly renormalizable interactions (pocessing dimensionless coupling constants) as e.g. “local gauge theories”, there is essentially no non-perturbative analytic result.


Light Cone Braid Group Tracial State Superselection Sector Exchange Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    S. Doplicher, R. Haag and J. Roberts, Comm. Math. Phys. 23, 199 (1971) and 35, 49 (1974).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H.J. Borchers, Comm. Math. Phys. 121, 251 (1965).Google Scholar
  4. 4.
    D. Buchholz and K. Fredenhagen, Comm. Math. Phys. 84, 1 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    K. Fredenhagen, K.H. Rehren and B. Schroer: Superselection sectors with braid group statistics and exchange algebras I General Theory (to appear in Comm. Math. Phys.), II (to be published).Google Scholar
  6. 6.
    V. Jones, Invent. Math. 72 (1983), Ann. Math. 126, 335 (1987).MATHCrossRefGoogle Scholar
  7. 7.
    R. Longo: Index of subfactors and statistics of quantum field I (to appear in Comm. Math. Phys.), II, University of Rome preprint 1989.Google Scholar
  8. 8.
    For an early accoutn of the recent development see B. Schroer “Algebraic Aspects of Non-Perturbative Quantum Field Theories”, Como 1987 in Differential Geometric Methods in Theoretical Physics, ed, K. Bleuler and M. Werner.Google Scholar
  9. 9.
    K.H. Rehren and B. Schroer, Nucl. Phys. 312, 3 (1989) and references therein.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Fröhlich: Statistics of fields the Yang-Baxter equation and the theory of knots and links, Proceedings of the 1987 Cargèse School.Google Scholar
  11. 11.
    This illustration is taken from B. Schroer: New Concepts and Results in Nonperturbative Quantum field theory, in Differential Geometric Methods in Theoretical Physics, Chester 1988, Editor Allan I. Solomon, where also the appropriate references can be found.Google Scholar
  12. 12.
    For a recent reference: M. Karowski, Yang-Baxter-Algebra-Integrable Systems — Con-formal Quantum Field Theories, ETH-TH/89–13.Google Scholar
  13. 13.
    B. Schroer: High T c Superconductivity and a New Symmetry Concept in Low dimensional QFT, FU Berlin preprint, April 1989.Google Scholar
  14. 14.
    D. Buchholz, C. D’Antoni and K. Fredenhagen, Comm. Math. Phys. 111, 123–135 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    S. Doplicher and J. Roberts: C* algebras and duality for compact groups: why there is a compact group of internal gauge symmetry in particle physics, Proceedings Marseille 1986 (eds. M. Mebkhout and R. Séneor) World Scientific 1987.Google Scholar
  16. 16.
    V.G. Drinfeld: Quantum groups, Proceedings ICM (1986). M. Jombo. Lett, in Math. Phys. 11, 247 (1986).CrossRefGoogle Scholar
  17. 17.
    J. von Neumann, Ann. Math. 50 (1949), 401–485 and references to previous publications.MATHCrossRefGoogle Scholar
  18. 18.
    A. Connes, Correspondences, hand-written notes. S. Popa, Correspondences, INCREST preprint 1986.Google Scholar
  19. 19.
    A. Ocneanu: Quantized Groups, String Algebras and Galois Theory for Algebras, Dept. of Mathematics Research Report, Pennsylvania State University, State College 1988. Talk given at this conference.Google Scholar
  20. 20.
    K. Fredenhagen, talk given at this conference.Google Scholar
  21. 21.
    D. Buchholz, G. Mack and J. Todorov: The current algebra on the circle as a germ of local field theories, DESY 88–126 (preprint).Google Scholar
  22. 22.
    E. Witten, Comm. Math. Phys. 121, 351 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    J.R. McMullen and J.F. Price: Reversible hypergroups, Rendi. del Sem. Mat. e. fis. de Milano XL VII (1977), 67–85Google Scholar
  24. 23a.
    K.A. Ross: Hypergroups and centers of measure algebras, 1st. Naz. di Alta Mat. Symposia, Math. Vol XXII (1977), 189–203.Google Scholar
  25. 24.
    A. Ocneanu (unpublished), H. Wenzl, Invent. Math. 92, 349 (1988).MathSciNetADSCrossRefGoogle Scholar
  26. 25.
    S. Popa: Classification of subfactors: the finite depth case, preprint 1989.Google Scholar
  27. 26.
    B. Schroer and J.A. Swieca, Phys. Rev. D10 (1974) 480.MathSciNetADSGoogle Scholar
  28. 26a.
    See also B. Schroer, J.A. Swieca and A.H. Völkel, Phys. Rev. D11 (1975) 1509.ADSGoogle Scholar
  29. 27.
    R. Köberle and E.C. Marino, Phys. Lett. B126, 6, 475 (1983).ADSGoogle Scholar
  30. 28.
    R. Brustein, lecture given at this conference.Google Scholar
  31. 29.
    K. Fredenhagen and J. Hertel, Comm. Math. Phys. 80, 555 (1989).MathSciNetADSCrossRefGoogle Scholar
  32. 31.
    V.S. Sunder: II 1 factors, their bimodules and hypergroups, University of Bangalore, Indian Statistical Institute preprint (1989). Sunders fundamental conjecture is that every hypergroup has precisely one R-R bimodule realization.Google Scholar
  33. 32.
    This observation Ocneanu attributes to V. Pasquirer, see ref. 19.Google Scholar
  34. 33.
    A. Wassermann, talk given at the U.S. — U.K. joint conference on Operator Algebras at Warwick in July 1987, University of Liverpool preprint.Google Scholar
  35. 34.
    Yu. Reshetikhin: Quantized Universal Enveloping Algebra, The Yang-Baxter Equations and Invariants of Links I, II, Lomi preprint 1988.Google Scholar
  36. 35.
    A. Lima Santos and B. Schroer, in preparation as a FU preprint.Google Scholar
  37. 36.
    A. Capelli, C. Itzykson and H.B. Zuber, Nucl. Phys. B280, 445 (1987).ADSCrossRefGoogle Scholar
  38. 38.
    J. Cardy, Nucl. Phys. B270, [FS 16], (1986) 186.MathSciNetADSCrossRefGoogle Scholar
  39. 40.
    K. Fredenhagen: Structural Aspects of Gauge Theories in the Algebraic Framework of Quantum Field Theory, University of Freiburg preprint 1982, THEP 82/9.Google Scholar
  40. 41.
    Many of the recent (and yet unpublished) results on the description of plektons in particular for d = 3 have been obtained in collaboration of K. Fredenhagen, K.H. Rehren, R. Schrader and myself.Google Scholar
  41. 42.
    Anyons in configuration-space or path-space formulation have a long history: J.M. Leinaas and J. Myrheim, Il Nuovo Cimento 37B, 1 (1977)ADSGoogle Scholar
  42. 42a.
    F. Wilszek, Phys. Rev. Lett. 48, 1144 (1982)ADSCrossRefGoogle Scholar
  43. 42b.
    F. Wilszek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983)MathSciNetADSCrossRefGoogle Scholar
  44. 42c.
    F. Wilszek and A. Zee, Phys. Rev. Lett**. 49, 975 (1982)ADSGoogle Scholar
  45. 42d.
    Y.S. Wu, Phys. Rev. 53, 111 (1984)ADSGoogle Scholar
  46. 42e.
    J. Fröhlich and P.A. Marchetti, Comm. Math. Phys. 121, 177 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  47. All of these treatments are in configuration- or path-space. No operator construction has been presented in d = 3 dimensions.Google Scholar
  48. For an interesting account including the histroy of abelian braid group statistics in d = 2 dimensions (including Klaibers 1967 work) seeGoogle Scholar
  49. 42f.
    J. A. Swieca: Fields With Generalized Statistics: An Exercise in Order- and Disorder in two Dimensional Systems, PUC preprint 1980, published in the 1980 Karpacz Winter School proceedings.Google Scholar
  50. 43.
    B. Schroer and J.A. Swieca, Nucl. Phys. B121, 505 (1977).ADSCrossRefGoogle Scholar
  51. 44.
    B. Schroer, T.T. Truong and P. Weisz, Ann. Phys. 102, 156 (1976).ADSCrossRefGoogle Scholar
  52. 45.
    The Bogolinkov-Valatin part of the anyonic operators appears at many places: B. Schroer, Nucl. Phys. 295 [FS 21], (1988) 586, formula (2.22) and references.MathSciNetADSCrossRefGoogle Scholar
  53. 46.
    This was discussed by J. Fröhlich at the 1989 Ringberg meeting.Google Scholar
  54. 47.
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241, 333 (1984).MathSciNetADSCrossRefGoogle Scholar
  55. 48.
    R.F. Streater and A.S. Wightman: PCT, Spin And Statistics And All That, Theorem 4–15, W.A. Benjamin, Inc. 1964.Google Scholar
  56. 49.
    J.E. Roberts: Spontaneously Broken Gauge Symmetries and Superselection Rules, Proceedings of the International School of Mathematical Physics, Camerino 1974, University di Camerino 1976.Google Scholar
  57. 50.
    J.E. Roberts, Comm. Math. Phys. 51, 107 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  58. 51.
    V.G. Knishnik and A.B. Zamolodchikov, Nucl. Phys. B247, 83 (1984).ADSCrossRefGoogle Scholar
  59. 52.
    B. Schroer in: A Trip to Scalingland, Lectures given at the V Brasilian Symposium on Theoretical Physics, Rio de Janeiro, January 1974, Vol. I, Editor Erasmo Ferreira, R. Dashen and V. Frishman, Phys. Rev. D11, 2781 (1973). In both papers, the algebraic version of the K-Z equation appears for the first time. The old papers on string theory also were much more algebraic and there is a lot in common with the beginnings of conformal QFT2:Google Scholar
  60. 52a.
    K. Bardakci and M.B. Halperin, Phys. Rev. D3, 2493 (1971)ADSGoogle Scholar
  61. 52b.
    M.B. Halperin, Phys. Rev. D4, 2398 (1971).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. Schroer
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations