Structure of Superselection Sectors in Low-Dimensional Quantum Field Theory

  • Klaus Fredenhagen
Part of the NATO ASI Series book series (NSSB, volume 245)


The basic principles of relativistic quantum field theory, i.e. locality as an incorporation of Einstein causality and the spectrum condition as a formulation of stability, which are extremely restrictive in 4 dimensional space time admit a richer structure in low dimensions (2 and 3). So particle statistics is in general described by a representation of the braid group instead of the usual Bose and Fermi statistics, statistical weights in cross sections are given in terms of link invariants, and the notion of a group of internal symmetries is generalized to “quantized symmetries”, as quantum groups or Ocneanu’s quantized groups.


Unitary Representation Braid Group Conformal Field Theory Double Cone Superselection Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Fredenhagen, K.H. Rehren, B. Schroer: Superselection sectors with braid group statistics and exchange algebras. I General Theory (to appear in Comm. Math. Phys.), II (to be published).Google Scholar
  2. 2.
    K.H. Rehren, B. Schroer: Einstein causality and Artin braids, Nucl. Phys. B 312, 3 (1989).MathSciNetGoogle Scholar
  3. 3.
    J. Fröhlich: Statistics of fields, the Yang Baxter equation and the theory of knots and links, Proceedings of the 1987 Cargèse School.Google Scholar
  4. 4.
    E. Witten: Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121, 351 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    H.-J. Borchers: On the vacuum state in quantum field theory, Comm. Math. Phys. 1, 57 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6a.
    S. Doplicher, R. Haag, J. Roberts: Local observables and particle statistics, Comm. Math. Phys. 23, 199 (1971)MathSciNetADSCrossRefGoogle Scholar
  7. 6b.
    S. Doplicher, R. Haag, J. Roberts: Local observables and particle statistics, Comm. Math. Phys. and 35, 49 (1974).MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    R. Haag, D. Kastler: An algebraic approach to field theory, J. Math. Phys. 5, 848 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 8.
    D. Buchholz, C. D’Antoni, K. Fredenhagen: The universal structure of local algebras, Comm. Math. Phys. 111, 123–135 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 9.
    H.-J. Borchers: Local rings and the connection of spin with statistics, Comm. Math. Phys. 1, 281 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 10.
    J. Bisognano, E. Wichmann: On the duality condition for a hermitean scalar field, J. Math. Phys. 16, 985 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 11.
    J. Roberts: Spontaneously broken gauge symetries and superselection rules, in Proceedings of the Camerino School 1974 (ed. G. Gallavotti).Google Scholar
  13. 12.
    D. Buchholz, G. Mack, J. Todorov: The current algebra on the circle as a germ of local field theories, DESY 88–126 (Preprint).Google Scholar
  14. 13.
    D. Buchholz, K. Fredenhagen: Locality and the Structure of particle states, Comm. Math. Phys. 84, 1 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 14.
    D. Buchholz: The physical state space of quantum electrodynamics, Comm. Math. Phys. 85, 49 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 15.
    S. Doplicher, J. Roberts: C*-algebras and duality for compact groups: why there is a compact group of internal gauge symmetries in particle physics, in Proceedings Marseille 1986 (eds. M. Mebkhout, R. Séneor) World Scientific 1987.Google Scholar
  17. 16.
    R.F. Streater, J.F. Wilde: Fermion states of a boson field, Nucl. Phys. B 24, 561 (1970).ADSCrossRefGoogle Scholar
  18. 17a.
    F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982),MathSciNetADSCrossRefGoogle Scholar
  19. 17b.
    F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).MathSciNetADSCrossRefGoogle Scholar
  20. 17c.
    F. Wilczek, A. Zee, Phys. Rev. Lett. 51, 2250 (1982).MathSciNetADSCrossRefGoogle Scholar
  21. 17d.
    Y.S. Wu, Phys. Rev. Lett. 53, 111 (1984).MathSciNetADSCrossRefGoogle Scholar
  22. 18.
    J. Fröhlich, P.A. Marchetti: Quantum field theories of vortices and anyons, Comm. Math. Phys. 121, 177 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 19.
    V. Jones: Invent. Math. 72, (1983), Ann. Math. 126, 335 (1987).MATHCrossRefGoogle Scholar
  24. 20.
    A. Ocneanu (unpublished), H. Wenzl, Invent. Math. 92, 349 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 21.
    R. Longo: Index of subfactors and statistics of quantum fields (to appear in Comm. Math. Phys.).Google Scholar
  26. 22.
    J. Fröhlich, F. Gabbiani, P.A. Marchetti: Superselection sectors and statistics in three dimensional local quantum theory. ETH-TH/89–22 (Preprint).Google Scholar
  27. 23.
    D. Buchholz, H. Epstein: Spin and statistics of quantum topological charges, Fizika 17, 329 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Klaus Fredenhagen
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations