Advertisement

Growth of Indium Phosphide/Indium Gallium Arsenide Structures by MOCVD Using an Atmospheric Pressure Reactor

  • S. J. Bass
  • S. J. Barnett
  • G. T. Brown
  • N. G. Chew
  • A. G. Cullis
  • M. S. Skolnick
  • L. L. Taylor
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

An atmospheric pressure reactor has been used to grow indium phosphide/indium gallium arsenide epitaxial layers. Growth pauses were used to sharpen the heterojunction interfaces. In order to study heterojunctions, two dimensional gas and quantum effects, remotely doped alloy layers, quantum wells (QWs) and multiple quantum wells (MQWs) were grown. The structures were studied by Hall measurements, magneto-resistance effects, photoluminesence (PL), optical absorption, double crystal x-ray diffraction and transmission electron microscopy (TEM).

The best indium phosphide grown had a mobility of 135000 cm2 sec-1V-1 at 77K with n = 3 × 1014cm-3. Indium gallium arsenide alloy compositions were reproducible with a mobility of 82000 cm2 s-1V-1 at 77K and n = 6 × 1014cm-3. The optimum growth temperature was 660–680°C. The x-ray diffraction rocking curve width (FWHM) was 21 arc secs and the PL linewidth at 2K was 1.85 meV.

The remotely doped structures showed good two dimensional electron gas (2 DEG) effects at the heterojunction with well resolved Shubnikov de Haas oscillations and a 2 DEG mobility of 85000 cm2V-1s-1 at 6.5 × 1011 cm-2 and 4.2K. Well defined quantum wells could be grown even with growth times as short as 3 seconds. Quantum wells had a PL linewidth of 5.3 meV at 150A width and 2K and 5.5meV at 100Å at zero carrier density. The quantum wells showed 2 DEG mobilities of up 95000 cm2 sec-1V-1 at carrier densities of 9 × 1011cm-2. Multiple 100Å guantum wells have been grown with up to 50 repeats and InP spacers of 50–500Å. The PL linewidths of MQWs were similar to those of single QWs. Well resolved heavy and light hole peaks were observed in optical absorption with line widths of 10 meV. X-ray diffraction showed that the periodicity of the MQWs was well-controlled but there was a periodic strain in a nominally lattice matched structure. TEM images showed that the microscopic uniformity of the MQWs was good. The alloy/InP interface was never as sharp as the InP/alloy interface.

Keywords

Molecular Beam Epitaxy Gallium Arsenide Alloy Layer Indium Phosphide Indium Gallium Arsenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.Claxton, J.S.Roberts, J.P.R.David, C.M.Sotomayor-Torres, M.S.Skolnick, P.R.Tapster and K.J.Nash, MBE Conference, York, 1986. To be published in J.Cryst.GrowthGoogle Scholar
  2. 2.
    W.T.Tsang, J.Electr.Mater. 15 (1986) 235ADSCrossRefGoogle Scholar
  3. 3.
    M.Razeghi, M.A.Poisson, J.P.Larivain and J.P.Duchemin, J.Electr.Mater. 12 (1983) 371ADSCrossRefGoogle Scholar
  4. 4.
    A.P.Roth, M.A.Sacilotti, R.A.Masut, A.Machado and P.J.Darcy, J.Appl.Phys. 60 (1986) 2003ADSCrossRefGoogle Scholar
  5. 5.
    S.J.Bass and M.L.Young, J.Cryst.Growth, 68 (1984) 311ADSCrossRefGoogle Scholar
  6. 6.
    K.W.Carey, Appl.Phys.Letts. 46 (1985) 89ADSCrossRefGoogle Scholar
  7. 7.
    K.T.Chan, L.D.Zhu and J.M.Ballantyne, Appl.Phys.Letts. 47 (1985) 44ADSCrossRefGoogle Scholar
  8. 8.
    A.Mircea, R.Mellet, B.Rose, D.Robein, H.Thibierge, G.Laroux, P.Daste, S.Godefroy, P.Ossart and A.M.Pougnet, J.Electron.Mater. 15 (1986) 205ADSCrossRefGoogle Scholar
  9. 9.
    C.C.Hsu, R.M.Cohen and G.B.Stringfellow, J.Cryst.Growth 63 (1983) 8ADSCrossRefGoogle Scholar
  10. 10.
    M.J.Ludowise, J.Appl.Phys. 58 (1985) R31ADSCrossRefGoogle Scholar
  11. 11.
    C.A.Larsen and G.B.Stringfellow, J.Cryst.Growth 75 (1986) 247ADSCrossRefGoogle Scholar
  12. 12.
    R.Didchenko, J.E.Alix and R.H.Toenikoetter, J.Inorg.Nucl.Chem. 14 (1960) 35CrossRefGoogle Scholar
  13. 13.
    J.P.Duchemin, M.Bonnet, G.Beuchet and F.Koelsch, Inst.Phys.Con.Ser. 45, Chapter 1 (1978) P10Google Scholar
  14. 14.
    R.H.Moss and J.S.Evans, J.Cryst.Growth. 55 (1981) 129ADSCrossRefGoogle Scholar
  15. 15.
    S.J.Bass, C.Pickering and M.L.Young, J.Cryst.Growth, 64 (1983) 68ADSCrossRefGoogle Scholar
  16. 16.
    G.B.Stringfellow, J.Cryst.Growth 68 (1984) 111ADSCrossRefGoogle Scholar
  17. 17.
    S.J.Bass, M.S.Skolnick, H.Chudzynska and L.Smith, J.Cryst.Growth 75 (1986) 221ADSCrossRefGoogle Scholar
  18. 18.
    C.A.Larsen, C.H.Chen, M.Kitamura, G.B.Stringfellow, D.W.Brown and A.J.Robertson, Appl.Phys.Lett. 48 (1986) 1531ADSCrossRefGoogle Scholar
  19. 19.
    F.Eversteyn, P.J.Severin, C.H.J.v.d.Brekel and H.L.Peek, J.Electrochem.Soc. 117 (1970) 925CrossRefGoogle Scholar
  20. 20.
    L.J.Giling, J.Electrochem.Soc. 129 (1986) 634CrossRefGoogle Scholar
  21. 21.
    R.J.M.Griffiths, N.G.Chew, A.G.Cullis and G.C.Joyce, Electr.Letts. 19 (1983) 988ADSCrossRefGoogle Scholar
  22. 22.
    E.J.Thrush, J.E.A.Whiteaway, G.Wale-Evans, D.R.White and A.G.Cullis, J.Cryst.Growth 68 (1984) 412ADSCrossRefGoogle Scholar
  23. 23.
    S.J.Bass, S.J.Barnett, G.T.Brown, N.G.Chew, A.G.Cullis, A.D.Pitt and M.S. Skolnick, Intnl.Conf. on Cryst.Growth 8, York 1986 — to be published in J. Cryst. GrowthGoogle Scholar
  24. 24.
    B.de Cremoux, P.Hirtz and J.Ricardi, Inst.Phys.Conf.Ser. 56 (1981) 115Google Scholar
  25. 25.
    K.L.Fry, C.P.Kuo, R.M.Cohen and G.B.Stringfellow, Appl.Phys.Letts. 46 (1985) 955ADSCrossRefGoogle Scholar
  26. 26.
    K.W.Carey, Appl.Phys.Letts. 46 (1985) 89ADSCrossRefGoogle Scholar
  27. 27.
    K.H.Goetz, D.Bimberg, H.Jurgensen, J.Selders, A.V.Solomonov, G.F.Glinski and M.Razeghi, J.Appl.Phys. 54 (1983) 4543ADSCrossRefGoogle Scholar
  28. 28.
    M.Razeghi and J.P.Duchemin, J.Vac.Sci.Technol. B1(2) (1983) 262Google Scholar
  29. 29.
    M.Razeghi, J.P.Duchemin, J.C.Portal, L.Dmowski, G.Remeni, R.J.Nicholas and A.Briggs, Appl.Phys.Letts. 48 (1986) 712ADSCrossRefGoogle Scholar
  30. 30.
    A.W.Nelson, R.H.Moss, J.G.Regnault, P.C.Spurdens and S.Wong, Electr.Letts. 21 (1985) 331CrossRefGoogle Scholar
  31. 31.
    C.P.Kuo, K.L.Fry and G.B.Stringfellow, Appl.Phys.Letts. 47 (1985) 855ADSCrossRefGoogle Scholar
  32. 32.
    J.J.Coleman, G.Costrini, S.J.Jeng and C.M.Wayman, J.Appl.Phys. 59 (1986) 428ADSCrossRefGoogle Scholar
  33. 33.
    F.Scholz, P.Wiedemann, K.W. Benz, G.Trankle, E.Lach, A.Forchel, G.Laube and J.Weidlen, Appl.Phys.Letts. 48 (1986) 811CrossRefGoogle Scholar
  34. 34.
    M.J.Kane, D.A.Anderson, L.L.Taylor and S.J.Bass, J.Appl.Phys. 60 (1986) 657ADSCrossRefGoogle Scholar
  35. 35.
    M.S.Skolnick, P.R.Tapster, S.J.Bass, N.Apsley, A.D.Pitt, N.G.Chew, A.G.Cullis, S.P.Aldred and C.A.Warwick, Appl.Phys.Lett. 48 (1986) 1455ADSCrossRefGoogle Scholar
  36. 36.
    M.S.Skolnick, K.J.Nash, P.R.Tapster, S.J.Bass and A.D.Pitt — to be publishedGoogle Scholar
  37. 37.
    M.J.Kane, D.A.Anderson, L.L.Taylor and S.J.Bass — to be published in Appl.Phys.Letts. 17 Nov. 1986Google Scholar
  38. 38.
    M.Erman, J.P.Andre and J.LeBris, J.Appl.Phys. 59 (1986) 2019ADSCrossRefGoogle Scholar
  39. 39.
    M.S.Skolnick, P.R.Tapster, S.J.Bass, A.D.Pitt, N.Apsley and S.P.Aldred, Semicond.Sci.Technol. 1 (1986) 29ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • S. J. Bass
    • 1
  • S. J. Barnett
    • 1
  • G. T. Brown
    • 1
  • N. G. Chew
    • 1
  • A. G. Cullis
    • 1
  • M. S. Skolnick
    • 1
  • L. L. Taylor
    • 1
  1. 1.Royal Signals and Radar EstablishmentMalvern, WorcsUK

Personalised recommendations