Advertisement

Superlattices and Superstructures Grown by MOCVD

  • Naozo Watanabe
  • Yoshifumi Mori
  • Hiroji Kawai
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

MOCVD technollogy has, in recent several years, been remarkably advanced to meet wide range of requirement of the most active forefront of III–V compound semiconductor technology. It has recently been successfully used in growing various kinds of abrupt structures such as superlattices, quantum wells, modulation doped structures and HBT’s and so on. Abrupt structures have also been grown with materials other than GaAs/AlGaAs. There are fundamental differences in the growth temperature dependence of the structure of the quantum wells between MOCVD and MBE, which reflect the difference in the growth mechanisms between the two methods. In addition to the sophisticated structures, an abrupt structure device such as HIFET (hetero-interface FET: so-called HEMT) has been produced as a practical commercial product.

Keywords

Growth Temperature High Electron Mobility Metalorganic Chemical Vapor Deposition Hill Formation Sheet Carrier Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Holonyak, Jr., W. D. Laidig, B. a. Bojak, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, Alloy Clustering in AlxGa1-xAs-GaAs Quantum-Well Heterostructures, Phys. Rev, Lett., 24:1703 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    P. M. Frijlink, and J. Maluenda, MOVPE Growth of Ga1-xAlxAs-GaAs Quantum Well Heterostructureas, Japan. J. Appl. Phys., 21:L574 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    H. M. Manasevit, and W. I. Simpson, The Use of Metal-Organics in the Preparation of Semiconductor Materials, J. Electrochem. Soc. 116:1725 (1969).CrossRefGoogle Scholar
  4. 4.
    M. R. Leys, C. Van Opdorp, M. P. a. Viegers, and H. J. Talen-van der Mheen, Growth of Multiple Thin Layer Structures in the GaAs-AlAs System Using a Novel VPE Reactor, J. Cryst. Growth. 68:431 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    N. Kobayashi, and T. Fukui, Selectively Doped GaAs/n-AlGaAs Heterostructures Grown by MOCVD, Extended Abstracts of the 16th (1984 International) Conference on Solid State Devices and Materials. P671 (1984).Google Scholar
  6. 6.
    F. Hottier, J. Hallais, and F. Simondet, In situ monitoring by ellipsometry of metalorganic epitaxy of GaAlAs-GaAs superlattice, J. Appl. Phys., 51:1599 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    H. Kawai, S. Imanaga, K. Kaneko, and N. Watanabe, Complex refractive indices of AlGaAs at high temperature measured by in situ reflectometry during growth by metalorganic chemical vapor depositon, to be published in J. Appl. Phys., 61 on January 1 (1987).Google Scholar
  8. 8.
    T. Fukui, and H. Saito, (InAs)1(GaAs)1 Layered Crystal Grown by MOCVD, Japan. J. Appl. Phys., 23:L521 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    N. Watanabe, and Y. Mori, Ultrathin Layers GaAs/GaAlAs grown by MOCVD and their Structural Characterization, Surface Science. 174:10 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    N. Kobayashi, T. Makimoto, and Y. Horikoshi, Flow-Rate Modulation Epitaxy of GaAs, Japan. J. Appl. Phys., 24:L962 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    A. Doi, Y. Aoyagi, S. Iwai, and S. Namba, Stepwise Monolayer Growth of GaAs by Switched Laser Metal Organic Vapor Phase Epitaxy, Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials. P739 (1986).Google Scholar
  12. 12.
    K. Kajiwara, H. Kawai, K. Kaneko, and N. Watanabe, Structure of MOCVD grown AlAs/GaAs heterointerfaces observed by transmiossion electron microscopy, J. Appl. Phys., 24:L85 (1985).ADSGoogle Scholar
  13. 13.
    H. Kawai, K. Kaneko, and N. Watanabe, Photoluminescence of AlGaAs/GaAs quantum well grown by metallorganic chemical vapor deposition, J. Appl. Phys., 56:463 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    H. Kawai, K. Kaneko, and N. Watanabe, Doublet state of resonantly coupled AllGaAs/GaAs quantum wells grown by metalorganic chemical vapor deposition, J. Appl. Phys., 58:1263 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    N. Watanabe, and H. Kawai, Single and coupled double-well GaAs/AlGaAs and energy dependent light hole mass, to be published in J. Appl. Phys., vol.60 on 15 November (1986).Google Scholar
  16. 16.
    M. Razeghi, J. Nagle, and C. Weisbuch, Optical studies of GalnAs/InP quantum wells, Proc. 11th Int. Symp. GaAs and Related Compounds. Biarritz (1984), Inst. Phys. Conf. Ser., 74:379 (1985).Google Scholar
  17. 17.
    M. Kamada, H. Ishikawa, M. Ikeda, Y. Mori, and C. Kojima, Selectively doped AlInAs/GaInAs heterostructures grown by MOCVD and their application to HIFETs (heterointerface FETs), 13th International Symposium on Gallium Arsenide and Related Compounds (Las Vegas) 1986.Google Scholar
  18. 18.
    M. Ikeda, K. Nakano, Y. Mori, K. Kaneko, and N. Watanabe, MOCVD Growth of AlGaInP at Atmospheic Pressure Using Triethylmetals and Phosphine, J. Cryst. Growth, 77:380 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    M. Ikeda, pivate communication.Google Scholar
  20. 20.
    J. Singh, K. K. Bajaj, and S. Chaudhuri, Theory of photoluminescence line shape due to interfacial quality in quantum well structures, Appl. Phys. Lett. 44:805 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    M. G. Jacko, and S. J. W. Price, The Pyrolysis of Trimethyl Gallium, Canadian Journal of Chemistry. 41:1560 (1963).CrossRefGoogle Scholar
  22. 22.
    S. P. DenBaars. B. Y. Maa, P. D. Dapkus, A. D. Danner and H. C. Lee, Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD, J. of Cryst. Growth. 77:188 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    M. Tirtowidjojo, and R. Pollard, Equilibrium gas phase species for MOCVD of AlxGa1-xAs, J. of Cryst. Growth. 77:200 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    A. Isnibashi, Y. Mori, M. Itabashi, and N. Watanabe, Optical properties of (Alas)n(GaAs)n superlattices grown by metalorganic chemical vapor deposition, J. Appl. Phys., 58:2691 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    A. Ishibashi, Y. Mori, M. Itabashi, and N. Watanabe, A fundamentally new aspect of electron-phonon interaction in (AlAs)m(GaAs)n ultrathin-layer superlattices, 18th International Conference on the Physics of Semiconductors (Stockholm). Tu 3–1, 33 (1983).Google Scholar
  26. 26.
    H. Kawai, O. Matsuda, and K. Kaneko, High Al-content visible (AlGa)As multiple quantum well heterostructure lasers grown by metalorganic chemical vapor depositon, Japan. J. Appl. Phys. Lett., 22:L727 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    S. D. Hersee, M. Karakowski, R. Blondeau, M. Baldy, B. de Cremoux, and J. P. Duchemin, Abrupt OMVPE Grown GaAs/GaAlAs Heterojunctions, J. of Cryst. Growth. 68:383 (1984).ADSCrossRefGoogle Scholar
  28. 28.
    J. P. Andre, A. Briere, M. Rocchi, and M. Riet, Growth of (Al,Ga)As/GaAs Heterostructures for HEMT Devices, J. of Cryst. Growth, 68:445 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    N. Kobayashi, and T. Fukui, Improved 2deg Mobility in Selectively Doped GaAs/N-AlGaAs Grown by MOCVD Using Triethyl Organimetallic Compounds, Electron. Lett., 20:887 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Mori, F. Nakamura, and N. Watanabe, High electron mobility in the selectively doped heterostructures grown by normal pressure metalorganic chemical vapor depositon, J. Appl. Phys., 60:334 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    S. Hiyamizu, J. Saito, K. Nanbu, and T. Ishikawa, Improved Electron Movility Higher than 106 cm2/Vs in Selectively doped GaAs/N-AlGaAs Heterostructures Grown by MBE, Japan. J. Appl. Phys., 22:L669 (1983).CrossRefGoogle Scholar
  32. 32.
    K. Tanaka, H. Takakuwa, F. Nakamura, Y. Mori, and Y. Kato, Low-noise Microwave HIFET Fabricated using Photolithography and MOCVD, Electron. Lett., 22:487 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    C. Dubon, R. Azoulay, P. Desrousseaux, J. Dangla, A. M. Duchenois, M. Hountondji, and D. Ankri, Effects of MOCVD growth conditions on DC characteristics of GaAlAs-GaAs double heterojunction bipolar transistors, Proc. 11th Int. Symp. GaAs and Related Compounds. Biaritz (1984). Inst. Phys. Conf. Ser., 74:175 (1985).Google Scholar
  34. 34.
    K. Taira, C. Takano, H. Kawai, and M. Arai, Emitter grading in AlGaAs/GaAs Heterojunction bipolar Transistors grown by metalorganic chemical vapor depositon, to be published in Appl. Phys. Lett., vol. 60 on November 10 (1986).Google Scholar
  35. 35.
    K. Taira, C. Takano, H. kawai, and M. Arai, Band offsets deduced from AlGaAs/GaAs heterojunction bipolar transistors, (unpublished).Google Scholar
  36. 36.
    I. Hase, H. Kawai, S. Imanaga, K. Kaneko, and N. Watanabe, MOCVD-grown AlGaAs/GaAs hot electron transistors with a base width of 30 nm, Electron. Lett., 21:757 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Naozo Watanabe
    • 1
  • Yoshifumi Mori
    • 1
  • Hiroji Kawai
    • 1
  1. 1.Sony Corporation Research CenterHodogaya-ku YokohamaJapan

Personalised recommendations