Epitaxial Growths and Surface Science Techniques Applied to the Case of Ni Overlayers on Single Crystal Fe(001)

  • B. Heinrich
  • A. S. Arrott
  • J. F. Cochran
  • S. T. Purcell
  • K. B. Urquhart
  • N. Alberding
  • C. Liu
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

The rapidly increasing interest and activity in the study of epitaxially deposited magnetic films on single crystal substrates stem both from the ability to stabilize metastable crystalline structures which do not exist otherwise in nature and from theoretical predictions of enhanced magnetic moments and crystalline anisotropics in low dimensional systems. For example, recent spectacular experimental results1,2 and theoretical calculations3 show that the crystalline anisotropy field in ultrathin Fe films is capable of overcoming the demagnetizing field perpendicular to its surface, making such films an ideal building block for multilayered permanent supermagnets. This is an example of the creation of new magnetic materials by means of atomic engineering. It should be pointed out that such recent advances and future progress in atomic engineering would not be possible without Molecular Beam Epitaxy (MBE) techniques using controlled atomic beams in Ultra High Vacuum (UHV) and using state of the art surface science techniques such as Reflection High Energy Electron Diffraction (RHEED), spin polarized or unpolarized Auger Electron Spectroscopy (AES) and X-Ray Photoelectron Spectroscopy (XPS).

Keywords

Nickel Microwave Anisotropy Acetone Torque 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.T. Jonker, K.H. Walker, E. Kisker, G.A. Prinz, and C. Carbone, Spin-polarized photoemission study of epitaxial Fe(001) films on Ag(001),Phys. Rev. Lett. 57:142 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    S. Shultz, D. Youm, A.F. Starr, and J.P. Armstrong, Direct dc magnetization measurements of Fe on Ag,J. Appl. Phys. (to be published).Google Scholar
  3. 3.
    J.G. Gay and Roy Richter, Spin anisotropy of ferromagnetic films, Phys. Rev. Lett. 56:2728 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    T. Takeuchi and S. Ikeda, Studies on iron single crystals, Trans. ISJI 9:484 (1969)Google Scholar
  5. 5.
    B. Heinrich, A.S. Arrott, J.F. Cochran, C. Liu, and K. Myrtle, Ferromagnetic resonance in ultrahigh vacuum: Effect of epitaxial overlayers, J. Vac. Sci. Technol. A4(3):1376 (1986)ADSGoogle Scholar
  6. 6.
    Z.Q. Wang, Y.S. Li, F. Jona, and P.M. Marcus, Ultra-Thin Epitaxial Films of bec Nickel, to be published in Mat. Res. Soc. (1986)Google Scholar
  7. 7.
    S.T. Purcell, B. Heinrich, and A.S. Arrott, RHEED oscillations during the epitaxial growth of metals on metals, (submitted for publication)Google Scholar
  8. 8.
    J.H. Neave, B.A. Joyce, P.J. Dobson, and N. Norton, Dynamics of film growth of GaAs by MBE from RHEED oscillations, Appl. Phys. A31:1 (1983)ADSGoogle Scholar
  9. 9.
    R.W. Vook and Y. Namba, Auger line shape analyses for epitaxial growth in the Cu/Cu, Ag/Ag AND Ag/Cu Systems, Appl. of Surf. Sci. 11/12:400 (1982)CrossRefGoogle Scholar
  10. 10.
    Y. Namba, R.W. Vook and S.S. Chao, Thickness periodicity in the Auger line shape from epitaxial (III)Cu Films, Surf. Sci. 109:320 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    M. De Crescenzi, L. Papagno, G. Chiarello, R. Scarnozzino, E. Colavita, R. Rosei and S. Mobilio, Extended ELS fine structures above the M2,3 edges of Cu and Ni, Sol. St. Comm. 40:613 (1981)CrossRefGoogle Scholar
  12. 11a.
    M. De Crescenzi, L. Papagno, G. Chiarello, R. Scarnozzino, E. Colavita, R. Rosei and L. Papagno, M. De Crescenzi, G. Chiavello, E. Colavita, R. Scarnozzino, L.S. Caputi and R. Rosei, Radial distribution functions of Cu and Ni by reflection energy loss spectroscopy, Surface Sci, 117:525 (1982)CrossRefGoogle Scholar
  13. 12.
    A.P. Hitchcock and C.H. Teng, Extended energy loss fine structure in reflection electron energy loss spectra of Cu and Ni, Surface Sci. 149:558 (1984)CrossRefGoogle Scholar
  14. 12a.
    A.P. Hitchcock and A.P. Hitchcock, EXELFS in the reflection electron energy loss spectra of Cu and Ni, J. Vac. Sci. Tech. A1:1209 (1983)ADSGoogle Scholar
  15. 13.
    F.W. Lytle, D.E. Sayers and E.A. Stern, Extended x-ray absorption fine structure technique: II. Experimental technique and selected results, Phys. Rev. B11:4825 (1975)ADSGoogle Scholar
  16. 13a.
    F.W. Lytle, D.E. Sayers and D.E. Sayers and F.W. Lytle, Extended x-ray absorption fine structure technique: III. Determination of physical parameters, Phys. Rev. B11:4836 (1975).ADSGoogle Scholar
  17. 14.
    Mitio Inokuti, Inelastic collisions of fast charged particles with atoms and molecules — the Bethe theory revisited, Rev. Mod. Phys. 43:297 (1971)ADSCrossRefGoogle Scholar
  18. 15.
    J.R. Macdonald, Ferromagnetic resonance and the internal field in ferromagnetic materials, Proc. Phys. Soc. London A64:968 (1951)ADSGoogle Scholar
  19. 16.
    J.F. Cochran, B. Heinrich, and A.S. Arrott, Ferromagnetic resonance in a system composed of a ferromagnetic substrate and an exchange coupled thin ferromagnetic overlayer, to be published in Phys. Rev. B34, #11Google Scholar
  20. 17.
    G.T. Rado and J.R. Weertman, Spin-wave resonance in a ferromagnetic metal, J. Phys. Chem. Solids 11:315 (1959)ADSCrossRefGoogle Scholar
  21. 17a.
    G.T. Rado and W.S. Ament and G.T. Rado, Electromagnetic effects of spin wave resonance in ferromagnetic metals, Phys. Rev. 97:1558 (1955)ADSCrossRefGoogle Scholar
  22. 18.
    Z. Frait, D. Fraitová, M. Kotrbová, Z. Hauptmann, Ferromagnetic resonance in thin single crystal platelets of Iron, Czech. J. Phys. B16:837 (1966)Google Scholar
  23. 19.
    D.S. Rodbell, Magnetic resonance of high quality ferromagnetic metal single crystals, Physics 1:279 (1965)Google Scholar
  24. 20.
    L. Neél, Anisotropie magnétique superficielle et surstructures d’orientation, J. de. Physique et Radium 15:225 (1954)MATHCrossRefGoogle Scholar
  25. 21.
    F. Hoffmann, A. Stankoff, and H. Pascard, Evidence for an Exchange coupling at the interface between two ferromagnetic films, J. Appl. Phys. 41:1022 (1970)ADSCrossRefGoogle Scholar
  26. 21a.
    F. Hoffmann, A. Stankoff, and F. Hoffmann, Dynamic pinning induced by Nickel layers on Permalloy films, Phys. Stat. Sol. 41:807 (1970)ADSCrossRefGoogle Scholar
  27. 22.
    B. Heinrich, J.F. Cochran, and R. Baartman, Ferromagnetic resonance absorption in Supermalloy at 9, 24, and 38 GHz., Can. J. Phys. 55:80 6 (1977)Google Scholar
  28. 23.
    J.F. Cochran and B. Heinrich, Microwave transmission through ferromagnetic metals, IEEE Trans. Magn. MAG-16:660 (1980)ADSCrossRefGoogle Scholar
  29. 24.
    B. Heinrich, D. Fraitová, and V. Kambersky, The influence or s-d exchange on relaxation of magnons in metal, Phys. Stat.Sol. 23:501 (1967).ADSCrossRefGoogle Scholar
  30. 25.
    B. Heinrich, D.J. Meredith, and J.F. Cochran, Wave number and temperature dependent Landau-Lifshitz damping in Nickel, J. Appl. Phys. 50:7726 (1979)ADSCrossRefGoogle Scholar
  31. 26.
    E.P. Wohlfarth, Iron, Cobalt and Nickel, in: “Ferromagnetic Materials, Vol. 1,” E.P. Wohlfarth, ed., North-Holland, Amsterdam (1980)Google Scholar
  32. 27.
    V.L. Moruzzi, P.M. Marcus, K. Schwarz and P. Mohn, Ferromagnetic phases of bcc and fcc Fe, Co, and Ni, Phys. Rev. B. 34:1784 (1986)ADSCrossRefGoogle Scholar
  33. 28.
    P. Grünberg, Y. Pang, R. Schreiber, M.B. Brodsky, and H. Sowers, Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, to be published in J. Appl. Phys., see also P. Grünberg’s chapter in this bookGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • B. Heinrich
    • 1
  • A. S. Arrott
    • 1
  • J. F. Cochran
    • 1
  • S. T. Purcell
    • 1
  • K. B. Urquhart
    • 1
  • N. Alberding
    • 1
  • C. Liu
    • 1
  1. 1.Physics DepartmentSimon Fraser UniversityBurnabyCanada

Personalised recommendations