Advertisement

Characterization of Superlattices by X-Ray Diffraction

  • W. J. Bartels
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

X-ray diffraction line profiles from layered structures grown epitaxially on perfect single crystal substrates contain a lot of information which can be correlated with the concentration depth profile in the grown structure (Bartels and Nijman, 1978). The diffraction profiles (rocking curves) of perfect crystals like silicon and gallium arsenide have a very narrow intrinsic half-width down to 2″, so that it is possible to detect the small changes in lattice constant typically related with processes like epitaxy, diffusion and ion-implantation. For this purpose a high-resolution X-ray diffractometer has been designed, where the germanium four-crystal monochromator results in an almost parallel and monochromatic incident beam for investigating the specimen (Bartels, 1983; Bartels, 1983/84). The actual concentration depth profile in a given layered structure can only be obtained after a detailed comparison of observed and calculated diffraction profiles.

Keywords

GaAs Substrate Diffraction Profile Optical Theory Super Lattice Kinematical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, W.J., 1983, Characterization of thin layers on perfect crystals with a multipurpose high resolution X-ray diffractometer, J. Vac. Sci. Technol ., B1:338.Google Scholar
  2. Bartels, W.J., 1983/84, High-resolution X-ray diffractometer, Philips Tech. Rev., 41:183.Google Scholar
  3. Bartels, W.J., Hornstra, J., and Lobeek, D.J.W. 1986, X-ray diffraction of multilayers and superlattices, Acta Crystallogr., A42:xx.Google Scholar
  4. Bartels, W.J., and Nijman, W., 1978, X-ray double-crystal diffractometry of Ga(1-x)Al(x)As epitaxial layers, J. Cryst. Growth, 44:518.ADSCrossRefGoogle Scholar
  5. Born, M., and Wolf, E., 1980, “Principles of Optics,” Pergamon Press, Oxford.Google Scholar
  6. Chang, L.L., Segmüller, A., and Esaki, L., 1976, Smooth and coherent layers of GaAs and AlAs grown by molecular beam epitaxy, Appl. Phys. Lett., 28:39.ADSCrossRefGoogle Scholar
  7. Chrzan, D., and Dutta, P., 1986, The effect of interface roughness on the intensity profiles of Bragg peaks from superlattices, J. Appl. Phys., 59:1504.ADSCrossRefGoogle Scholar
  8. Fingerland, A., 1971, Some properties of the single-crystal rocking curve in the Bragg case, Acta Crystallogr., A27:280.ADSGoogle Scholar
  9. Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W., and Logan, R.A., 1980, X-ray diffraction study of interdiffusion and growth in (GaAs)n(AlAs)m multilayers, J. Appl. Phys., 51:357.ADSCrossRefGoogle Scholar
  10. Fukuhara, A., and Takano, Y., 1977, Determination of strain distributions from X-ray Bragg reflexion by silicon single crystals, Acta Crystallogr., A33:137.ADSGoogle Scholar
  11. Halliwell, M.A.G., and Lyons, M.H., and Hill, M.J., 1984, The interpretation of X-ray rocking curves from III-V semiconductor device structures, J. Cryst. Growth, 68:523.ADSCrossRefGoogle Scholar
  12. Hornstra, J., and Bartels, W.J., 1978, Determination of the lattice constant of epitaxial layers of III-V compounds, J. Cryst. Growth, 44:513.ADSCrossRefGoogle Scholar
  13. International Tables for X-Ray Crystallography, Vol. IV, 1974, J.A. Ibers and W.C. Hamilton, eds., The Kynoch Press, Birmingham.Google Scholar
  14. James, R.W., 1963, The dynamical theory of X-ray diffraction, in: “Solid State Physics Vol. 15,” F. Seitz and D. Turnbull, eds., Academic Press, New York.Google Scholar
  15. James, R.W., 1967, “The Optical Principles of the Diffraction of X-Rays,” Bell, London.Google Scholar
  16. Kervarec, J., Baudet, M., Caulet, J., Auvray, P., Emery, J.Y., and Regreny, A., 1984, Some aspects of the X-ray structural characterization of (GaAlAs)n1(GaAs)n2/GaAs(001) superlattices, J. Appl. Cryst., 17:196.CrossRefGoogle Scholar
  17. Larson, B.C., and Barhorst, J.F., 1980, X-ray study of lattice strain in boron implanted laser annealed silicon, J. Appl. Phys., 51:3181.ADSCrossRefGoogle Scholar
  18. Lee, P., 1981, X-ray diffraction in multilayers, Opt. Commun., 37:159.ADSCrossRefGoogle Scholar
  19. McWhan, D.B., 1985, Structure of chemically modulated films, in: “Synthetic Modulated Structures,” L.L. Chang and B.C. Giessen, eds., Academic Press, New York.Google Scholar
  20. McWhan, D.B., Gurvitch, M., Rowell, J.M., and Walker, L.R., 1983, Structure and coherence of NbAl multilayer films, J. Appl. Phys., 54:3886.ADSCrossRefGoogle Scholar
  21. Pinsker, Z.G., 1978, “Dynamical Scattering of X-Rays in Crystals,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  22. Saxena, A.M., and Schoenborn, B.P., 1977, Multilayer neutron monochromators, Acta Crystallogr., A33:805.ADSGoogle Scholar
  23. Segmüller, A., 1979, Small-angle interferences of X-rays reflected from periodic and near-periodic multilayers, in: “AIP Conference Proceedings No. 53,” J.M. Cowley, J.B. Cohen, M.B. Salamon, and B.J. Wuensch, eds., American Institute of Physics, New York.Google Scholar
  24. Segmüller, A., and Blakeslee, A.E., 1973, X-ray diffraction from one-dimensional superlattices in GaAs(1-x)P(x) crystals, J. Appl. Cryst., 6:19.CrossRefGoogle Scholar
  25. Segmüller, A., Krishna, P., and Esaki, L., 1977, X-ray diffraction study of a one-dimensional GaAs-AlAs superlattice, J. Appl. Cryst., 10:1.CrossRefGoogle Scholar
  26. Speriosu, V.S., and Vreeland Jr., T., 1984, X-ray rocking curve analysis of superlattices, J. Appl. Phys., 56:1591.ADSCrossRefGoogle Scholar
  27. Spiller, E., and Rosenbluth, A.E., 1985, Determination of thickness errors and boundary roughness from the measured performance of a multilayer coating, in: “Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics,” SPIE Vol. 563:221, G.F. Marshall, ed., SPIE, Washington.Google Scholar
  28. Takagi, S., 1969, A dynamical theory of diffraction for a distorted crystal, J. Phys. Soc. Jpn, 26:1239.ADSCrossRefGoogle Scholar
  29. Tapfer, L., and Ploog, K., 1986, Improved assessment of structural properties of Al(x)Ga(1-x)As/GaAs heterostructures and superlattices by double-crystal X-ray diffraction, Phys. Rev. B, 33:5565.ADSCrossRefGoogle Scholar
  30. Taupin, D., 1964, Theorie dynamique de la diffraction des rayons X par les cristaux déformés, Bull. Soc. Fr. Minéral. Crystallogr., 87:469.Google Scholar
  31. Terauchi, H., Sekimoto, S., Kamigaki, K., Sakashita, H., Sano, N., Kato, H., and Nakayama, M., 1985, X-ray studies of semiconductor superlattices grown by molecular beam epitaxy, J. Phys. Soc. Jpn, 54:4576.ADSCrossRefGoogle Scholar
  32. Underwood, J.H., and Barbee Jr., T.W., 1981, Layered synthetic microstructures as Bragg diffractors for X-rays and extreme ultraviolet: theory and predicted performance, Appl. Opt., 20:3027.ADSCrossRefGoogle Scholar
  33. Vardanyan, D.M., and Manoukyan, H.M., and Petrosyan, H.M., 1985, The dynamic theory of X-ray diffraction by the one-dimensional ideal superlattice. I. Diffraction by the arbitrary superlattice, Acta Crystallogr., A41:212.Google Scholar
  34. Wie, C.R., Tombrella, T.A., and Vreeland Jr., T., 1986, Dynamical X-ray diffraction from nonunifrom crystalline films: Application to X-ray rocking curve analysis, J. Appl. Phys., 59:3743.ADSCrossRefGoogle Scholar
  35. Zachariasen, W.H., 1945, “Theory of X-ray Diffraction in Crystals,” Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • W. J. Bartels
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations