Probing Semiconductor MQW Structures by X-Ray Diffraction

  • Paul F. Fewster
Part of the NATO ASI Series book series (NSSB, volume 163)


This paper presents a systematic approach to the analysis of Multiple Quantum Well (MQW) structures, most of which can be undertaken on simple X-ray diffraction equipment. The structural parameters of interest are the layer thicknesses and their alloy compositions, and any deviations in these parameters. In an MQW structure, the quantum well width and the composition in the barriers, which gives the barrier height, determine the confined particle energy-states, which can be modified by compositional grading at the interfaces between the wells and the barriers. Therefore knowledge of the alloy composition in the barriers compared to that in the wells is an important parameter. Careful analysis of the X-ray diffraction profiles will give the well width and the compositional grading at the interfaces. To relate these results to that of the required parameters, for example the exciton associated with these transitions between the confined particle states we must first define the probe size. This can be considered as the region over which the X-rays are coherently diffracted. If the X-ray source size, and the slits, etc., are not too large the coherent region parallel to the diffracting planes will be large and the diffraction features will be the sum of the intensities from these regions over the incident beam area projected on the sample.


Diffraction Profile Multiple Quantum Well Barrier Width Molecular Beam Epitaxy Growth Superlattice Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fewster, P.F. Philips J. Res. 41, 268 (1986).Google Scholar
  2. 2.
    Kervarec, J., Baudet, M., Caulet, J., Auvray, P., Emery, J.Y. and Regreny, A. J. Appl. Cryst. 17, 196 (1984).CrossRefGoogle Scholar
  3. 3.
    Keravec, J. Doctor-Ingenieur thesis (1983).Google Scholar
  4. 4.
    Palatnik, L.S., Koz’ma, A.A., Mikhailov, I.F. and Maslov, V.N. Kristallografiya 23, 570 (1977).Google Scholar
  5. 5.
    Segrauller, A. and Blakeslee, A.E. J. Appl. Cryst. 6, 19 (1973).CrossRefGoogle Scholar
  6. 6.
    Compton, A.H. and Allison, S.K. “X-rays in Theory and Experiment”, 2nd Ed. Van Nostrand Reinhold, New York (1935).Google Scholar
  7. 7.
    Fewster, P.F. J. Appl. Cryst. 18, 334 (1985).CrossRefGoogle Scholar
  8. 8.
    Fewster, P.F. and Curling, C.J. To be published.Google Scholar
  9. 9.
    Estop, E., Izrael, A. and Sauvage, M. Acta Cryst. A32, 627 (1976).Google Scholar
  10. 10.
    Guinier, “X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies”, W.H. Freeman and Company, San Francisco (1963).Google Scholar
  11. 11.
    de Fontaine, D. “Local Atomic Arrangements Studied by X-ray Diffraction”, 36, 51 (1966).Google Scholar
  12. 12.
    Dawson, P., Duggan, G., Ralph, H.I., Woodbridge, K. and ’t Hooft, G.W. “Superlattices and Microstructures”, Vol.1, 3, 231 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    Orton, J.W., Dawson, P., Duggan, G., Fewster, P.F., Foxon, C.T., Gowers, J.P., Moore, K.J., Curling, C.J., Dobson, P.J., Ralph, H.I. and Woodbridge, K. To be published.Google Scholar
  14. 14a.
    Takagi, S. Acta Cryst. 15, 1311 (1962), andCrossRefGoogle Scholar
  15. 14b.
    Takagi, S. J. Phys. Soc. Japan 26, 1239 (1969).ADSCrossRefGoogle Scholar
  16. 15.
    Taupin, D. Bull. Soc. Franc. Mineral Crist. 87, 469 (1964).Google Scholar
  17. 16.
    Halliwell, M.A.G., Juler, J. and Norman, A.G. Inst. Phys. Conf. Ser. No. 67, 365 (1983).Google Scholar
  18. 17.
    Tanner, B.K. and Hill, M.J. “Advances in X-ray Analysis”, 29, 337 (1986).Google Scholar
  19. 18.
    Halliwell, M.A.G., Lyons, M.H. and Hill, M.J. J. Cryst. Growth, 68, 523 (1984).ADSCrossRefGoogle Scholar
  20. 19.
    Fukuhara, A. and Takano, Y. Acta Cryst. A33, 137 (1977).Google Scholar
  21. 20.
    Hill, M.J., Tanner, B.K. and Halliwell, M.A.G., Mat. Res. Soc. Symp. Proc. 37, 53 (1985).Google Scholar
  22. 21.
    Tapfer, L. and Ploog, K., Phys. Rev. B33, 5565, (1986).ADSGoogle Scholar
  23. 22.
    Clarke, R. This volume.Google Scholar
  24. 23.
    Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W. and Logan, R.A. J. Appl. Phys. 51, 357, (1980).ADSCrossRefGoogle Scholar
  25. 24.
    Rachinger, W.A. J. Sci. Instrum. 25, 254 (1948).ADSCrossRefGoogle Scholar
  26. 25.
    Fewster, P.F. To be published.Google Scholar
  27. 26.
    Fewster, P.F. and Curling, C.J. To be published.Google Scholar
  28. 27.
    Fewster, P.F., Gowers, J.P., Hilton, D. and Foxon, C.T. Fourth International Conference on MBE, York. To be published in J. Cryst. Growth (1986).Google Scholar
  29. 28.
    Gowers, J.P. In this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Paul F. Fewster
    • 1
  1. 1.Philips Research LaboratoriesRedhill, SurreyUK

Personalised recommendations