Advertisement

Spin-Polarized Neutron Reflection from Metastable Magnetic Thin Films

  • J. A. C. Bland
  • R. F. Willis
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

Many optical phenomena have been demonstrated using a neutron source of radiation [1]. For example, at the boundary between two media with different neutron refractive indices, a collimated neutron beam may, like light, be totally reflected when the incident angle is less than the critical glancing angle θc. Under conditions close to critical reflection, the neutron reflectivity is sensitive to the refractive index profile n(z) normal to the interface boundary [2]. The measurement of the reflected intensity for different angles of incidence θi > θc gives the depth profile of the scattering density. Variations in the neutron interaction potential, arising from inhomogeneities in the interface region, produces diffuse scattering around the specularly reflected beam which may be analyzed for interface roughness and strain effects. It is possible to extract separately the spatial dependence of the magnetisation (magnetisation profile) from the density profile at a ferromagnetic surface. The magnetic interaction potential is comparable in magnitude with the total interaction potential, which is a distinct advantage over grazing-incidence X-ray scattering where the magnetic part of the scattering cross-section is 10-5 weaker than the total interaction potential. Thus, the specular reflectivity of neutrons as a function of momentum transfer normal to the interface provides information on long-range (spin) ordering in magnetic films while the parallel momentum transfer component relates to the short-range order associated with, for example, critical fluctuations during a phase transition [3]. Similarly, the technique can be extended to magnetic super-lattices, Bragg diffraction from which provides information on the layer spacing and structure [4].

Keywords

Neutron Beam Magnetic Film Single Crystal Substrate Refractive Index Profile Neutron Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. L. Goldberger and F. Seitz, Phys. Rev., 71:294 (1947).ADSMATHCrossRefGoogle Scholar
  2. [2]
    J. B. Hayter, J. Penfold, and W. G. Williams, J. Phys. E (Sci. Instr.) 11:454 (1978).ADSCrossRefGoogle Scholar
  3. [3a]
    S. Dietrich and H. Wagner, Phys. Rev. Lett., 51:1469 (1983);ADSCrossRefGoogle Scholar
  4. [3b]
    S. Dietrich and R. Schack, Phys. Rev. Lett. 58:140 (1987).ADSCrossRefGoogle Scholar
  5. [4]
    C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B. McWhan, Y. Yafet, J. V. Waszczak, and C. Vettier, Phys. Rev. Lett., 56:2700 (1986).ADSCrossRefGoogle Scholar
  6. [5]
    C. Vettier, D. B. McWhan, E. M. Gyorgy, J. Kwo, and B. M. Buntschuh, Phys. Rev. Lett. 56:757 (1986).ADSCrossRefGoogle Scholar
  7. [6]
    U. Gradman, Review article, this volume.Google Scholar
  8. [7]
    Small-angle diffractometer D17, I.L.L., Grenoble, France (1987).Google Scholar
  9. [8]
    CRISP instrument at ISIS source, Rutherford-Appleton Lab, U.K. (1987).Google Scholar
  10. [9]
    O. Schaerpf, J. Phys. E (Sci. Instr.). 8:269 (1975), and [2].ADSCrossRefGoogle Scholar
  11. [10]
    F. Mezei, in: “Neutron Spin Echo”, F. Mezei, ed., Lecture Notes in Physics Vol. 128, pp.3–26, Springer-Verlag, Heidelberg (1980).CrossRefGoogle Scholar
  12. [11]
    T. J. L Jones and W. G. Williams, Rutherford-Appleton Lab, Internal Report RL-77–079; J. Appl. Phys., 57:3789 (1985).CrossRefGoogle Scholar
  13. [11b]
    G. P. Felcher, R. Felici, R. T. Kampwirth, and K. E. Gray, J. Appl. Phys., 57:3789 (1985).ADSCrossRefGoogle Scholar
  14. [12]
    J. B. Hayter, J. Penfold, and W. G. Williams, Nature. 262:569 (1976).ADSCrossRefGoogle Scholar
  15. [13]
    G. P. Felcher, Phys. Rev. B. 24:1595 (1981).ADSCrossRefGoogle Scholar
  16. [14]
    G. P. Felcher, K. E. Gray, R. T. Kampwirth, and M. B. Brodsky, Physica. 136B:59 (1986).Google Scholar
  17. [15]
    J. A. C. Bland, D. Pescia, R. F. Willis, and O. Schaerpf, Physica Scripta, in press (1986).Google Scholar
  18. [16]
    J. A. C. Bland, D. Pescia, and R. F. Willis, Europhysics Letters, in press (1986).Google Scholar
  19. [17]
    L. Nerot and D. Croce, Rev. Phys. Appl. 15:761 (1980).CrossRefGoogle Scholar
  20. [18]
    A. Steyerl, Z. Physik. 254:169 (1972).ADSCrossRefGoogle Scholar
  21. [19]
    J. A. C. Bland and R. F. Willis, to be published.Google Scholar
  22. [20]
    P. M. Marcus and N. L. Moruzzi, Sol. State Commun.. 55:97 (1985).ADSCrossRefGoogle Scholar
  23. [21]
    C. L. Fu, A. J. Freeman, and T. Oguchi, Phys. Rev. Lett., 54:2700 (1985).ADSCrossRefGoogle Scholar
  24. [22]
    A. Clarke, G. Jennings, and R. F. Willis, to be published.Google Scholar
  25. [23a]
    For recent theoretical work see: H. Hasegawa, J. Phys. F. 16:347 (1986)ADSCrossRefGoogle Scholar
  26. [23b]
    experimental work see: L. R. Sill, M. B. Brodsky, S. Bowen, and H. C. Hamaker, J. Appl. Phys., 57:3663 (1985).ADSCrossRefGoogle Scholar
  27. [24]
    D. Pescia, G. Zampieri, M. Stampanoni, G. L. Bona, R. F. Willis, and F. Meier, Phys. Rev. Lett., in press (1987).Google Scholar
  28. [25]
    J. A. C. Bland, D. Pescia, and R. F. Willis, Phys. Rev. Lett., in press (1987).Google Scholar
  29. [26]
    J. A. C. Bland, W. Schwarzacher, and R. F. Willis, to be published.Google Scholar
  30. [27]
    D. Pescia, G. Zampieri, M. Stampanoni, G. L. Bona, R. F. Willis, and F. Meier, Phys. Rev. Lett., in press (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • J. A. C. Bland
    • 1
  • R. F. Willis
    • 2
  1. 1.Clarendon LaboratoryUniversity of OxfordOxfordUK
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations