Advertisement

Metal Semiconductor Interfaces: The Role of Structure and Chemistry

  • R. Ludeke
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

The objective of this work is an assessment of the role of structure and defects on the electronic properties of metal-semiconductor interfaces. It can be argued that such an undertaking is premature, since little is known about the microscopic details of the interface structure between the metal and the semiconductor and even less about structural defects and impurities. However in the spirit of the NATO workshop, which among others emphasized the problems underlying our understanding of low dimensional structures, it is of importance to identify the relevant issues, discuss their implications and address and speculate at possible approaches towards their understanding. This approach will be undertaken here.

Keywords

Fermi Level Barrier Height Schottky Barrier Height Reflection High Energy Electron Diffraction Valence Band Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    A. Zur, T. C. McGill and D. L. Smith, Phvs. Rev. B 28:2960 (1983);ADSCrossRefGoogle Scholar
  2. 1b.
    C. B. Duke and C. Mailhoit, J. Vac. Sci. Technol. B 3:1170 (1985).CrossRefGoogle Scholar
  3. 2.
    The extent of the interface is here defined by the average thickness of the overlayer beyond which the electronic properties, for example the final position of the interface Fermi level with respect to the semiconductor band edges, do not change. The final position of the Fermi level/often referred as the pinning position, is reached at coverages below a monolayer of the metal (see Fig. 7)Google Scholar
  4. 3.
    V. Heine, Phys. Rev. 138:A1689 (1965).ADSCrossRefGoogle Scholar
  5. 4.
    J. Tersoff, Phvs. Rev. Letters 52:465 (1984).ADSCrossRefGoogle Scholar
  6. 5.
    W. E. Spicer, P. W. Chye, P. R. Skeath and I. Lindau, J. Vac. Sci. Technol. 16:1422(1979).ADSCrossRefGoogle Scholar
  7. 6.
    J. L. Freeouf and J. M. Woodall, Appl. Phys. Lett. 39:727 (1981).ADSCrossRefGoogle Scholar
  8. 7a.
    R. Ludeke and G. Landgren, Phys. Rev. B 33:5526 (1986);ADSCrossRefGoogle Scholar
  9. 7b.
    G. Hughes, R. Ludeke, F. Schäffler and D. Rieger, J. Vac. Sci. Technol. B 4:924 (1986).CrossRefGoogle Scholar
  10. 8.
    M. Mattern-Klosson and H. Lüth, Solid State Commun. 56:1001 (1985).ADSCrossRefGoogle Scholar
  11. 9.
    P. Skeath, C.Y. Su, I. Lindau and W. E. Spicer, J. Vac. Sci. Technol. 17:874 (1980).ADSCrossRefGoogle Scholar
  12. 10.
    C.B. Duke, A. Paton and W. K. Ford, Phvs. Rev. B 26:803 (1982).ADSCrossRefGoogle Scholar
  13. 11.
    J. Carelli and A. Kahn, Surf. Science 116:380 (1982).ADSCrossRefGoogle Scholar
  14. 12.
    P. Skeath, C.Y. Su, W. A. Harrison, I. Lindau and W. E. Spicer, Phys. Rev. B 27:6246 (1983).ADSCrossRefGoogle Scholar
  15. 13.
    C. M. Bertoni, C. Calandra, F. Manghi and E. Molinari, Phys. Rev. B 27:1251 (1983).ADSCrossRefGoogle Scholar
  16. 14.
    C. Mailhoit, C. B. Duke and D. J. Chadi, Phys. Rev. Letters 53:2114 (1983).ADSCrossRefGoogle Scholar
  17. 15.
    P. Martensson, G. V. Hanson, M. Lähdeniemi, K. O. Magnusson, S. Wiklund and J.M. Nicholls, Phys. Rev. B 33:7399 (1986).ADSCrossRefGoogle Scholar
  18. 16.
    K. Li and A. Kahn, J. Vac. Sci. Technol. A4:958 (1986).ADSGoogle Scholar
  19. 17.
    For GaAs doped to 1017cm-3 a surface charge of 1012e/cm2 is sufficient to cause a shift in the surface Fermi level (or band bending) of about 1 eV. See for example S. Sze, Chapter 5 in “Physics of Semiconductor Devices”, John Wiley & Sons, New York. (1981).Google Scholar
  20. 18a.
    R. Ludeke and G. Landgren, Phys. Rev. B 33:5526 (1986);ADSCrossRefGoogle Scholar
  21. 18b.
    R. Ludeke, Surf. Science 168:290(1986).ADSCrossRefGoogle Scholar
  22. 19.
    F. Schäffler, R. Ludeke, A. Taleb-Ibrahimi, G. Hughes and D. Rieger, Phys. Rev. B, to be published.Google Scholar
  23. 20.
    R. Ludeke, R. M. King and E. H.C. Parker, Chap. 16 in “The Technology and Physics of Molecular Beam Epitaxy”, E. H. C. Parker, ed., Plenum Press, N.Y. (1985).Google Scholar
  24. 21.
    R. Ludeke, L. L. Chang and L. Esaki, Appl. Phys. Lett. 23:201 (1973).ADSCrossRefGoogle Scholar
  25. 22a.
    R. Ludeke and G. Landgren, J. Vac. Sci. Technol. 19:667 (1981);ADSCrossRefGoogle Scholar
  26. 22b.
    R. Ludeke, G. Landgren and L.L. Chang, in Proc. 8th Int. Vac. Cong., F. Abeles and M. Croset, ed., Soc. Franc. du Vide, Paris, (1980), Vol. I, p.579.Google Scholar
  27. 23.
    J. Massies and N. T. Linh, Surf. Sci. 114:147 (1982).ADSCrossRefGoogle Scholar
  28. 24a.
    G. Landgren, S. P. Svensson and T. G. Andersson, Surf. Sci. 122:55 (1982);ADSCrossRefGoogle Scholar
  29. 24b.
    G. Landgren, S. P. Svensson and T. G. Andersson, J. Phys. C15:6673 (1982).ADSGoogle Scholar
  30. 25.
    R. Ludeke, T.-C. Chiang and D.E. Eastman, Physica 117B/118B:819 (1983).Google Scholar
  31. 26.
    M. Missous, E. H. Rhoderick and K.E. Singer, J. Appl. Phys. 60:2439 (1986).ADSCrossRefGoogle Scholar
  32. 27.
    Z. Liliental-Weber, C. Nelson, R. Gronsky, J. Washburn and R. Ludeke, 1986 Symposia Proc, Materials Research Society, to be published.Google Scholar
  33. 28.
    Z. Liliental-Weber presented at Electron Microscope Society of America (EMSA) meeting, Albuquerque, NM, Aug. 1986, and private communications.Google Scholar
  34. 29.
    G. Landgren, R. Ludeke and C. Serrano, J. Cryst. Growth 60:393 (1982).ADSCrossRefGoogle Scholar
  35. 30.
    W. Wang, J. Vac. Sci. Technol. B1:574 (1983).Google Scholar
  36. 31.
    S. P. Svensson, G. Landgren and T. G. Andersson, J. Appl. Phys. 54:4474 (1983),ADSCrossRefGoogle Scholar
  37. 32.
    M. Heiblum and R. Ludeke, unpublished results.Google Scholar
  38. 33.
    J. Hölzl and F.K. Schulte in “Springer Tracts in Modern Phys.”, vol. 85, p.l, G. Höhler, ed., Springer-Verlag, Berlin (1979) vol. 85, p. 1.Google Scholar
  39. 34.
    R. Ludeke, T.-C. Chiang and D. E. Eastman, J. Vac. Sci. Technol. 21:599 (1982).ADSCrossRefGoogle Scholar
  40. 35.
    F. J. Himpsel and Th. Fauster, J. Vac. Sci. Technol. A2:815 (1984).ADSGoogle Scholar
  41. 36.
    R. Ludeke, D. Straub, F. J. Himpsel and G. Landgren, J. Vac. Sci. Technol. A4:874 (1986).ADSGoogle Scholar
  42. 37a.
    M. Grioni, J. J. Joyce and J. H. Weaver, J. Vac. Sci. Technol. A3:918 (1985);ADSGoogle Scholar
  43. 37b.
    J. H. Weaver, M. Grioni and J. J. Joyce, Phys. Rev. B 31:5348 (1985);ADSCrossRefGoogle Scholar
  44. 37c.
    M. W. Ruckman, J. J. Joyce and J.H. Weaver, Phys. Rev. B 33:7029 (1986).ADSCrossRefGoogle Scholar
  45. 38.
    J. Nogami, M. D. Williams, T. Kendelewicz, I. Lindau and W. E. Spicer, J. Vac. Sci. Technol. A4:808 (1986).ADSGoogle Scholar
  46. 39.
    F. Schäffler, G. Hughes, W. Drube, R. Ludeke and F. J. Himpsel, Phys. Rev. B, to be published.Google Scholar
  47. 40.
    This is the accuracy for relative shifts in band bending for coverages up to ≃ 2 Å. For larger coverages and the absolute position of the Fermi level relative to the semiconductor band edges, the accuracy is probably no better than ±50 meV.Google Scholar
  48. 41.
    F. Schäffler, W. Drube, G. Hughes, R. Ludeke and F. J. Himpsel, J. Vac. Sci. Technol. to be published.Google Scholar
  49. 42.
    B. Clerjaud, J. Phvs. C, 18:3615 (1985).ADSGoogle Scholar
  50. 43a.
    C. D. Brandt, A. M. Hennel, L. M. Pawlowicz, F. P. Dabkowski, J. Lagowski and H. C. Gatos, Appl. Phys. Letters 47:607 (1985);ADSCrossRefGoogle Scholar
  51. 43b.
    C. D. Brandt, A. M. Hennel, L. M. Pawlowicz, F. P. Dabkowski, J. Lagowski and H. C. Gatos, Phys. Rev. B 33:7353 (1986).ADSCrossRefGoogle Scholar
  52. 44.
    J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys Rev. Letters 57:2579 (1986).ADSCrossRefGoogle Scholar
  53. 45.
    C. F. Quate, Physics Today, Aug. 1986; Physics Today, Jan. 1987.Google Scholar
  54. 46.
    R. M. Hamers, R. M. Tromp and J. E. Demuth, Phys. Rev. Lett. 56:1972 (1986).ADSCrossRefGoogle Scholar
  55. 47.
    R. Ludeke, T.-C. Chiang and T. Miller, J. Vac. Sci. Technol. Bl:581, (1983), and corrections to data given in Ref. 18.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • R. Ludeke
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations