Increased Magnetic Moments in Transition Elements Through Epitaxy

  • A. S. Arrott
  • B. Heinrich
  • C. Liu
  • S. T. Purcell
Part of the NATO ASI Series book series (NSSB, volume 163)


The elements of the first transition series, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, are of special importance for magnetism and metallurgy. The phase diagrams of these elements and their alloys with one another and elements such as C, Si and Al fill encylopedic volumes.1–5 The correlation between atom size, by various measures, and magnetic moment has long been noted.6 This correlation is readily seen by comparing the atomic concentrations of the first, second and third transition series elements as shown in Fig. 1, where the densities for the second and third series elements have been scaled for comparison with the first transition series. It seems that there is some missing density, excess volume, in Cr, Mn, Fe, Co, and Ni, all of which show ordering of magnetic moments. The main purpose of this paper is to argue that in the cases of Fe, Mn, Cr, and possibly V, artificially increasing the volume of these elements through controlled epitaxial growth may lead to higher magnetic moments and other technologically important magnetic properties. We like to call this atomic engineering, implying that we are building structures atom by atom.


Lave Phase RHEED Pattern Grey Diamond Cylindrical Mirror Analyser Ultra High Vacuum System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hansen, “Constitution of Binary Alloys”, 2nd ed. McGraw-Hill, New York (1958)Google Scholar
  2. 2.
    R. P. Elliott, “Constitution of Binary Alloys, First Supplement”, McGraw-Hill, New York (1965)Google Scholar
  3. 3.
    F. A. Shunk, “Constitution of Binary Alloys, Second Supplement”, McGraw-Hill, New York (1969)Google Scholar
  4. 4.
    W.B. Pearson, “A Handbook of Lattice Spacing and Structures of Metals and Alloys, Vol. 2”, Pergamon Press, Oxford (1967) pp 55–75Google Scholar
  5. 5.
    P. Villars and L.D. Calvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phases” in 3 vols., American Society for Metals, Cleveland (1985)Google Scholar
  6. 6a.
    W.B. Pearson, “A Handbook of Lattice Spacing and Structures of Metals and Alloys”, Pergamon Press, Oxford (1958), pp 55–75;Google Scholar
  7. 6b.
    see also M. Shiga, Correlation Between Lattice Constant and Magnetic Moment in 3d Transition Metal Alloys in “1973- Magnetism and Magnetic Materials”, American Institue of Physics, New York (1974), p 463–477Google Scholar
  8. 7.
    T.K. Kim and M. Takahashi, New Magnetic Material Having Ultrahigh Magnetic Moment, Appl. Phys. Lett. 20,492(1972),ADSCrossRefGoogle Scholar
  9. 8.
    K. Mitsuoka, H. Miyajima, H. Ino and S. Chikazumi, Induced Magnetic Moment in Ferromagnetic Fe Alloys by Tetragonally Elongated Lattice Expansion, J. Phys. Soc. Jpn, 53:2381–2390 (1984)ADSCrossRefGoogle Scholar
  10. 9a.
    B.C. Frazer, Magnetic Structure of Fe4N, Phys. Rev. 112:75 (1958);ADSCrossRefGoogle Scholar
  11. 9b.
    also W.J. Takei, G. Shirane and B.C. Frazer, Magnetic Structure of Mn4N, Phys. Rev. 119:122 (1961)ADSCrossRefGoogle Scholar
  12. 10a.
    B.T. Jonker, K.-H Walker, E. Kisker, G.A. Prinz, and C. Carbone, Spin-polarized Photoemission Study of Epitaxial Fe(001) Films on Ag(001), Phys. Rev. Lett. 57:142 (1986);ADSCrossRefGoogle Scholar
  13. 10b.
    J. G. Gay and R. Richter, Phys. Rev. Lett. 56:2728 (1986)ADSCrossRefGoogle Scholar
  14. 10c.
    S.D. Bader, E.R. Moog and P. Grunberg, J. Magn. Magn. Mat. 53:L295 (1985);CrossRefGoogle Scholar
  15. 10d.
    B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks and H. Winter, J. Phys F15:1337 (1985)ADSCrossRefGoogle Scholar
  16. 11.
    see for example: A. Tasaki, K. Tagawa, E. Kita, S. Harada and T. Kusunose, Recording Tapes Using Iron Nitride Fine Powder, IEEE Trans. Magnetics MAG-17:3026 (1981)Google Scholar
  17. 12.
    D.H. Martin, “Magnetism in Solids”, M.I.T. Press, Cambridge, Mass (1967), p 122Google Scholar
  18. 13.
    G.E. Brodale, R.A. Fisher, N.E. Phillips and K. Matho, Approach to Magnetic Saturation in CuMn and AgMn, J. Magn. Magn. Mater, 54–57 194 (1986)Google Scholar
  19. 14.
    W.B. Pearson, “The Crystal Chemistry and Physics of Metals and Alloys”, Wiley-Interscience, New York (1972), pp 135–193Google Scholar
  20. 15.
    N. Mori and T. Mitsui, Localized Magnetic Moments and Pauling Valence in Manganese Metal, Some 3d-Transition Alloys and Intermetallic Compounds, J. Phys. Soc. Jpn, 25:82 (1968); Mori and Mitsui give references to the early work on Mn intermetallic compounds.ADSCrossRefGoogle Scholar
  21. 16.
    L. Pauling in “Theory of Alloy Phases”, The American Society for Metals, Cleveland, Ohio (1956), p 220Google Scholar
  22. 17.
    B. J. Gellatly and J. L. Finney, Characterization of Models of Multicomponent Amorphous Metals: The Radical Alternative to the Voronoi Polyhedron, J. Non-Crystall. Solids 50:313 (1982)ADSCrossRefGoogle Scholar
  23. 18.
    R.E. Watson and L.H. Bennett, “Alpha Manganese and the Frank Kasper Phases”, Scripta Metall. 19:535–538(1985)Google Scholar
  24. 19.
    Private communication R. E. Watson and L. H. BennettGoogle Scholar
  25. 20a.
    A. J. Bradley and J. Thewlis, Proc. Roy. Soc. A115:456 (1927);ADSGoogle Scholar
  26. 20b.
    T. Yamada, Magnetism and Crystal Symmetry of α-Mn, J. Phys. Soc. Jpn, 28:596–609 (1970)ADSCrossRefGoogle Scholar
  27. 21.
    H.J. Goldschmidt, “Interstitial Alloys”, Plenum Press, New York (1967)Google Scholar
  28. 22.
    see for example: T.E. Madey, R. Stockbauer, S.A. Flodström, J.F. van der Veen, F.J. Himpsel and D.E. Eastman, Photon-stimulated desorption from covalently bonded species: CO absorbed on Ru(001), Phys. Rev. B23:6847 (1980)ADSGoogle Scholar
  29. 23a.
    C. S. Lent and P. I. Cohen, Quantitative analysis of streaks in reflection high-energy electron diffraction, Phys. Rev. B33:8329 (1986);ADSGoogle Scholar
  30. 23b.
    P. A. Maksym and J. L Beeby, Surface Sci. 110, 423 (1981);ADSCrossRefGoogle Scholar
  31. 23c.
    T. Kawamura and P. A. Maksym, Surface Sei. 161,12–24 (1985);ADSCrossRefGoogle Scholar
  32. 23d.
    J.B. Pendry, “Low Energy Electron Diffraction”, Academic, London (1975), Chap. 4Google Scholar
  33. 24.
    E. Bauer and J. H. van der Merwe, Structure and growth of crystalline superlattices: From monolayers to superlattice, Phys. Rev. B33:3657 (1986)ADSGoogle Scholar
  34. 25.
    J.S. Kasper and B.W. Roberts, Antiferromagnetic Structure of α-Manganese and a Magnetic Structure Study of ß-Manganese, Phys. Rev. 101:537–544 (1956)ADSCrossRefGoogle Scholar
  35. 26.
    A. Arrott, Antiferromagnetism in Metals in “Magnetism, Vol II B”, ed. G.T. Rado and H. Suhl, Academic Press, New York (1966) pp378–383Google Scholar
  36. 27.
    B. Heinrich, A.S. Arrott, J.F.Cochran, ST. Purcell, K.B. Urquhart, N. Alberding and C. Liu, Epitaxial Growth and Surface Science Techniques Applied to the Case of Ni Overlayers on Single Crystal Fe(001), this volume.Google Scholar
  37. 28a.
    B.W. Veal and A.P. Paulikas, X-Ray-Photoelectron Final-State Screening in Transition-Metal Compounds, Phys. Rev. Lett. 51:1995–1998 (1983);ADSCrossRefGoogle Scholar
  38. 28b.
    B.W. Veal and A.P. Paulikas, Final-state screening and chemical shifts in photoelectron spectroscopy, Phys. Rev B 31:5399–5416 (1985)ADSCrossRefGoogle Scholar
  39. 28c.
    B.W. Veal, D.E. Ellis and D.J. Lam, Molecular-cluster study of core-level x-ray photoelectron spectra: Application to FeCI2, Phys. Rev. B 32:5391–5401 (1985)ADSCrossRefGoogle Scholar
  40. 29.
    S. Doniachand M. Sunjic, J. Phys. C3:285(1970)Google Scholar
  41. 30a.
    L.C. Davis and L.A. Feldkamp, Resonant photoemission involving super-Coster-Kronig transitions, Phys. Rev. B23:6239 (1981);ADSGoogle Scholar
  42. 30b.
    see also later references in R. Clauberg, W. Gudat, W. Radlik, and W. Braun, Phys. Rev. B31:1754 (1985)ADSGoogle Scholar
  43. 31.
    F.R. McFeely, S.P. Kowalszcyk, L. Ley and D.A. Shirley, Solid State Commun.15:1051 (1974)ADSCrossRefGoogle Scholar
  44. 32a.
    C. D. Wagner, W. M. Riggs, L.E. Davis, J.F. Moulder and G.E. Mulenberg, “Handbook of X-Ray Photoeclectron Spectroscopy”, (Perkin Elmer Corporation, Physical Electronics Division, Eden Pairie, Minnesota (1980);Google Scholar
  45. 32b.
    D. A. Shirley, R.L. Maartin, S.P. Kowalczyk, F.R. McFeeley and L. Ley, Phys. Rev. B15:’544 (1977)ADSGoogle Scholar
  46. 33a.
    Fitting of the susceptibility and specific heat yeild a value of 4μB, see for instance F.W. Smith, Phys. Rev. B14:241 (1976), but it appears that the Mn atom has 5μB and the conduction band electrons produce a negative spin clothing of 1μB that is sufficiently well coupled to show up in the entropy and susceptibility.ADSGoogle Scholar
  47. 33b.
    This subject is treated by D.C. Abbas, T.J. Aton and C.P. Slichter, Phys. Rev. B25:1474 (1982)ADSGoogle Scholar
  48. 34.
    P. Steiner, F. Hüfner, N. Martinsson and B. Johansson, Core-Level Binding Energy Shifts in Dilute Alloys.Solid State Commun.37:73 (1981)CrossRefGoogle Scholar
  49. 35.
    E. von Meerwall and D.S. Schreiber, Local Magnetic Fields in Vanadium-Manganese Alloy System, Phys. Rev. B3:1 (1971)ADSGoogle Scholar
  50. 36a.
    A.S. Arrott, B. Heinrich, C. Liu and ST. Purcell, Deducing 3d Spin Polarization from 3s XPS in Ultrathin Metal Films grown by Molecular Beam Epitaxy, J. Magn. Magn. Mat. 54–57:1025 (1986)Google Scholar
  51. 36b.
    B. Heinrich, C.Liu and A.S. Arrott, Very Thin Films of Mn, Ag, and Ag(Mn) Epitaxially Deposited on Ru, J. Vac. Sci. Techoi. B3:766 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • A. S. Arrott
    • 1
  • B. Heinrich
    • 1
  • C. Liu
    • 1
  • S. T. Purcell
    • 1
  1. 1.Surface Science Laboratory, Department of PhysicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations