Magnetic Interface Preparation and Analysis

  • Ulrich Gradmann
  • Marek Przybylski
Part of the NATO ASI Series book series (NSSB, volume 163)


Recent interest in artificial metallic superlattices1–4 has two faces: The first aim is to study, for the case of metals, the unusual physical properties resulting from the periodic modulation, which became such a fascinating field for the case of semiconductor lattices. Secondly, metallic superlattices seem to be convenient systems for the study of interface phenomena, of size effects in thin films and of twodimensional systems, which can easily be observed in superlattices because of their strong multiplication. However, this analysis of interface phenomena can be done more reliably using single films, for which growth modes and structures of interfaces can be controlled much better than in superlattices. Physical properties, however must then be detected with monolayer or submonolayer sensitivity. For the case of interface magnetism this analysis using single ultrathin films has been done for many years using high sensitivity Torsion Oscillation Magnetometry (TOM) both in air5,6 (ATOM) and in UHV7,9 (UTOM), and recently using Conversion Electron Moessbauer Spectroscopy10 (CEMS). The present paper reports on this type of experimental interface magnetism using thin films, with special emphasis on the preparation of flat epitaxial film structures, bounded by well-defined, diffusion-free, atomically sharp plane interfaces.


Auger Electron Spectroscopy Misfit Dislocation Anisotropy Field Probe Layer Magnetic Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Falco and I. K. Schuller, in “Synthetic Modulated Structures/VLSI”, ed. by L. L. Chang and B. C. Giessen, Academic Press, Orlando (1985).Google Scholar
  2. 2.
    R. F. C. Farrow, S. S. P. Parkin, P. J. Dobson, J. H. Neave, A. S. Arrott, (ed), Thin-Film Growth Techniques for Low-Dimensional Structures, Plenum 1987.Google Scholar
  3. 3.
    J. Kwo in reference (2).Google Scholar
  4. 4.
    J. P. Renard in reference (2).Google Scholar
  5. 5.
    U. Gradmann and J. Mueller, Phys. Stat. Sol. 27, 313 (1986).ADSGoogle Scholar
  6. 6.
    U. Gradmann, Appl. Phys. 3, 161 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    U. Gradmann, R. Bergholz and E. Bergter, Thin Solid Films 126, 107 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    L. M. Falicov and J. L. Moran-Lopez, (ed), “Magnetic Properties of Low-Dimensional Systems”, Springer-Verlag (1986).Google Scholar
  9. 9.
    U. Gradmann in reference (8).Google Scholar
  10. 10.
    J. Korecki and U. Gradmann, Phys. Rev. Lett. 55, 2491 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    For a theoretical review compare A. Corciover, G. Costache and D. Vaman, Solid State Physics (Academic Press (1972)) p. 237.Google Scholar
  12. 12.
    H. Hasegawa, Surface Science, to be published.Google Scholar
  13. 13.
    D. Wang, A. J. Freeman and H. Krakauer, Phys. Rev. 26, 1340 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    J. Tersoff and L. M. Falicov, Phys. Rev. B 26, 6186 (1982).ADSGoogle Scholar
  15. 15.
    For a review of theoretical work on surface/interface magnetization compare articles of A. J. Freeman and R. H. Victora in reference (8).Google Scholar
  16. 16.
    S. Ohnishi, M. Weinert and A. J. Freeman, Phys. Rev. B 30, 36 (1984).ADSGoogle Scholar
  17. 17.
    C. L. Fu, A. J. Freeman, T. Oguchi, Phys. Rev. Lett. 54, 2700 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    L. Néel, Compt. Rend. 237, 1468 (1953).MATHGoogle Scholar
  19. 19.
    U. Gradmann, J. Magn. Magn. Mat. 54–57, 733 (1986).CrossRefGoogle Scholar
  20. 20.
    T. E. Gallon, Surface Sci. 17, 486 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    M. P. Seah and W. A. Dench, Surf. Interf. Analysis 1, 2 (1979).CrossRefGoogle Scholar
  22. 22.
    W. Schlenk and E. Bauer, Surf. Sci. 93, 9 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    S. Stoyanov and I. Markov, Surface Sci. 116, 313 (1982).ADSCrossRefGoogle Scholar
  24. 24.
    P. I. Cohen in reference (2); compare also C. S. Lent and P. I. Cohen, Phys. Rev. B 33, 8329 (1986).ADSGoogle Scholar
  25. 25.
    M. Henzler, Appl. Phys. A 34, 205 (1984).ADSGoogle Scholar
  26. 26.
    V. Scheithauer, G. Meyer, M. Henzler, Surface Sience, to be published.Google Scholar
  27. 27.
    E. Bauer, Z. Kristallogr. 110, 372 (1958).CrossRefGoogle Scholar
  28. 28.
    I. Markov and R. Kaischew, Thin Solid Films 32, 163 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    I. Markov and R. Kaischew, Kristall Tech. 11, 685 (1976).CrossRefGoogle Scholar
  30. 30.
    U. Gradmann, W. Kuemmerle and P. Tillmanns, Thin Solid Films 34, 249 (1976).ADSCrossRefGoogle Scholar
  31. 31.
    U. Gradmann and P. Tillmanns, Phys. Stat. Sol. (a) 44, 539 (1977).ADSCrossRefGoogle Scholar
  32. 32.
    E. Bauer and J. H. van der Merwe, Phys. Rev. B 33, 3657 (1986).ADSGoogle Scholar
  33. 33.
    F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. A 198, 216 (1949).ADSGoogle Scholar
  34. 34.
    J. H. van der Merwe, J. Appl. Phys. 34, 117, 123 (1963).ADSCrossRefGoogle Scholar
  35. 35a.
    J. W. Matthews, Phil. Mag. 6, 1347 (1961);ADSCrossRefGoogle Scholar
  36. 35b.
    J. W. Matthews, Phil. Mag. 13, 1207 (1966).ADSCrossRefGoogle Scholar
  37. 36.
    U. Gradmann, Ann. Phys. (Leipzig) 17, 91 (1966).ADSGoogle Scholar
  38. 37.
    J. W. Matthews and J. L. Crawford, Thin Solid Films 5, 187 (1970).ADSCrossRefGoogle Scholar
  39. 38.
    J. W. Matthews and E. Klokholm, Mat. Res. Bull. 7, 213 (1972).CrossRefGoogle Scholar
  40. 39.
    For a review of coherent interfaces and misfit dislocations, compare J. W. Matthews in J. W. Matthews, (ed), Epitaxial Growth, part B, Academic Press (1975).Google Scholar
  41. 40.
    U. Gradmann, Phys. kondens. Materie 3, 91 (1964).ADSGoogle Scholar
  42. 41.
    U. Gradmann and G. Waller, Surface Science 116, 539 (1982).ADSCrossRefGoogle Scholar
  43. 42.
    R. Bergholz and U. Gradmann, J. Magn. Magn. Mat. 45, 389 (1984).ADSCrossRefGoogle Scholar
  44. 43.
    P. J. Besser, J. E. Mee, P. E. Elkins and D. M. Heinz, Mat. Res. Bull. 6, 1111 (1971).CrossRefGoogle Scholar
  45. 44.
    P. Haasen, Physical Metallurgy, Cambridge 1978.Google Scholar
  46. 45.
    H. C. Siegmann in reference (2).Google Scholar
  47. 46.
    A. S. Arrott, B. Heinrich, C. Liu and S. T. Purcell in reference (2).Google Scholar
  48. 47.
    G. A. Prinz in reference (2).Google Scholar
  49. 48.
    B. Heinrich, A. S. Arrott, J. F. Cochran, S. T. Purcell and N. Alberding in reference (2).Google Scholar
  50. 49.
    P. Gruenberg in reference (2).Google Scholar
  51. 50.
    R. Willis in reference (2).Google Scholar
  52. 51.
    J. Tyson, A. H. Owens, J. C. Walker and G. Bayreuther, J. Appl. Phys. 52, 2487 (1981).ADSCrossRefGoogle Scholar
  53. 52.
    J. Korecki und U. Gradmann, Phys. Rev. Letters 55, 2491 (1985).Google Scholar
  54. 53.
    R. Feder, (ed), Polarized Electrons in Surface Physics, World Scientific Publ., Singapore (1985).Google Scholar
  55. 54.
    U. Gradmann, J. Appl. Phys. 40, 1182 (1969).ADSCrossRefGoogle Scholar
  56. 55.
    U. Gradmann and J. Mueller, Czech. J. Physics B21, 553 (1971).ADSCrossRefGoogle Scholar
  57. 56.
    U. Gradmann, W. Kuemmerle and R. Tham, Appl. Physics 10, 219 (1976).ADSCrossRefGoogle Scholar
  58. 57.
    U. Gradmann and K. Salewski, Physica 86–88B, 1397 (1977).Google Scholar
  59. 58.
    U. Gradmann and K. Salewski, Physica 86–88B, 1399 (1977).Google Scholar
  60. 59.
    U. Gradmann and K. Salewski, Phys. Stat. Solidi (a) 39, 41 (1977).ADSCrossRefGoogle Scholar
  61. 60.
    U. Gradmann, J. Magn. Magn. Mat. 6, 173 (1977).ADSCrossRefGoogle Scholar
  62. 61.
    W. Kuemmerle and U. Gradmann, Solid State Communications 24, 33 (1977).ADSCrossRefGoogle Scholar
  63. 62.
    W. Kuemmerle and U. Gradmann, Phys. Stat. Sol. (a) 45, 171 (1978).ADSCrossRefGoogle Scholar
  64. 63.
    U. Gradmann and H. O. Isbert, J. Magn. Magn. Mat. 15–18, 1109 (1980).CrossRefGoogle Scholar
  65. 64.
    U. Gradmann and R. Bergholz, Phys. Rev. Lett. 52, 771 (1984).ADSCrossRefGoogle Scholar
  66. 65.
    U. Gradmann, R. Bergholz and E. Bergter, IEEE Transactions Magnetics 20, 1840 (1984).ADSCrossRefGoogle Scholar
  67. 66.
    E. Bergter, U. Gradmann and R. Bergholz, Solid State Communications 53, 565 (1985).ADSCrossRefGoogle Scholar
  68. 67.
    U. Gradmann, J. Korecki and G. Waller, Appl. Phys. A 39, 1–8 (1986).ADSCrossRefGoogle Scholar
  69. 68.
    J. Korecki and U. Gradmann, Hyperfine Interactions, 28, 931 (1986).ADSCrossRefGoogle Scholar
  70. 69.
    J. Korecki and U. Gradmann, Europhys. Lett., 2 (8), 651 (1986).ADSCrossRefGoogle Scholar
  71. 70.
    J. B. Thaler, J. B. Ketterson and J. E. Hilliard, Phys. Rev. Lett. 41, 336 (1978).ADSCrossRefGoogle Scholar
  72. 71.
    M. Przybylski, U. Gradmann and J. Korecki, to be published.Google Scholar
  73. 72.
    R. Bergholz, Doctoral Thesis, Clausthal 1984.Google Scholar
  74. 73.
    C. A. T. Allan, Phys. Rev. B1, 352 (1970).ADSGoogle Scholar
  75. 74.
    J. Tersoff and L. M. Falicov, Phys. Rev. B26, 6186 (1982).ADSGoogle Scholar
  76. 75.
    J. Mathon, J. Phys. F 16, 669 (1986).ADSCrossRefGoogle Scholar
  77. 76.
    J. Mathon, J. Phys. F 16, L217 (1986).ADSCrossRefGoogle Scholar
  78. 77a.
    W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956) andADSCrossRefGoogle Scholar
  79. 77b.
    W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 905 (1957).ADSCrossRefGoogle Scholar
  80. 78.
    N. H. March, Ph. Lambin and F. Herman, J. Magn. Magn. Mat. 44, 1 (1984).ADSCrossRefGoogle Scholar
  81. 79.
    L. Fritsche, J. Noffke and H. Eckhardt, private communication.Google Scholar
  82. 80.
    G. T. Rado, Bull. Am. Phys. Soc. 2, 127 (1957).Google Scholar
  83. 81.
    C. L. Fu and A. J. Freeman, to be published; compare A. J. Freeman in reference (8).Google Scholar
  84. 82.
    G. Bayreuther and G. Lugert, J. Magn. Magn. Mat. 35, 50 (1983).ADSCrossRefGoogle Scholar
  85. 83.
    T. Shigematsu, H. D. Pfannes and W. Keune, Phys. Rev. Lett. 45, 1206 (1980).ADSCrossRefGoogle Scholar
  86. 84.
    W. Keune, Hyperfine Interactions 27, 111 (1986).ADSCrossRefGoogle Scholar
  87. 85.
    M. Przybylski, J. Korecki and U. Gradmann, to be published.Google Scholar
  88. 86.
    J. Korecki, M. Przybylski and U. Gradmann, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Ulrich Gradmann
    • 1
  • Marek Przybylski
    • 1
  1. 1.Physikalisches InstitutTechnische Universitaet ClausthalClausthal-ZellerfeldGermany

Personalised recommendations