Advertisement

RHEED Intensity Oscillations and the Epitaxial Growth of Quasi-2d Magnetic Semiconductors

  • L. A. Kolodziejski
  • R. L. Gunshor
  • A. V. Nurmikko
  • N. Otsuka
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

Reflection high energy electron diffraction (RHEED) intensity oscillations have been observed in the II-VI compound ZnSe and in the magnetic semiconductor MnSe. These RHEED intensity oscillations provided monolayer resolution in the growth of superlattice structures designed to explore the effects of reduced dimensionality on the magnetic ordering of MnSe. Using molecular beam epitaxy, the heretofore hypothetical zincblende MnSe has been grown. Although “thick” layers of MnSe are antiferromagnetic, thin layers of one, three, and four monolayers were found to exhibit paramagnetic behavior. The growth, use of the RHEED intensity oscillations, and magneto-optical characterization of these unique, highly lattice-mismatched structures is discussed. In addition nucleation characteristics, obtained via RHEED intensity oscillations, are described at a II-VI compound/HI-V compound interface for the ZnSe/GaAs heterojunction.

Keywords

Magnetic Semiconductor Reflection High Energy Electron Diffraction Intensity Oscillation Superlattice Structure Reflection High Energy Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Venkatasubramanian, N. Otsuka, S. Datta, L. A. Kolodziejski, and R. L. Gunshor, “Monte Carlo Simulation of Growth of II-VI Semiconductors by MBE,” Materials Research Society Symposium, Dec. 1–5, 1987, Boston.Google Scholar
  2. 2.
    L. A. Kolodziejski, T. Sakamoto, R. L. Gunshor, and S. Datta, “Molecular Beam Epitaxy of Cd1-xMxTe,” Appl. Phys. Lett. 44:799 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. Kolodziejski, R. L. Gunshor, T. C. Bonsett, R. Venkatasubramanian, S. Datta, R. B. Bylsma, W. M. Becker, and N. Otsuka, “Wide Gap II-VI Superlattices of ZnSe-ZnMnSe,” Appl. Phys. Lett. 47:169 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    L. A. Kolodziejski, T. C. Bonsett, R. L. Gunshor, S. Datta, R. B. Bylsma, W. M. Becker, and N. Otsuka, “Molecular Beam Epitaxy of Diluted Magnetic Semiconductor (CdMnTe) Superlattices,” Appl. Phys. Lett. 45:440 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Kolodziejski, R. L. Gunshor, S. Datta, T. C. Bonsett, M. Yamanishi, R. Frohne, T. Sakamoto, R. B. Bylsma, W. M. Becker, and N. Otsuka, “MBE Growth of Films and Superlattices of Diluted Magnetic Semiconductors,” J. Vac. Sci. Technol. B3:714 (1985).Google Scholar
  6. 6.
    R. N. Bicknell, R. Yanka, N. C. Giles-Taylor, D. K. Blanks, E. L. Buckland, and J. F. Schetzina, “CdMnTe-CdTe Multilayers Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 45:92 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    R. N. Bicknell, R. W. Yanka, N. C. Giles-Taylor, D. K. Blanks, E. L. Buckland, and J. F. Schetzina, “Properties of CdMnTe-CdTe Superlattices Grown by Molecular Beam Epitaxy,” J. Vac. Sci. Technol. B3:709 (1985).Google Scholar
  8. 8.
    L. A. Kolodziejski, R. L. Gunshor, N. Otsuka, X. C. Zhang, S. K. Chang, and A. V. Nurmikko, “(lOO)-Oriented Superlattices of Cd0.76Mn0.24Te on (100) GaAs,” Appl. Phys. Lett. 47:882 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    R. L. Gunshor, L. A. Kolodziejski, N. Otsuka, and S. Datta, “ZnSe-ZnMnSe and CdTe-CdMnTe Superlattices,” Surf. Sci. 174:522 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    L. A. Kolodziejski, R. L. Gunshor, N. Otsuka, S. Datta, W. M. Becker, and A. V. Nurmikko, “Wide Gap II-VI Superlattices,” IEEE on Quantum Electronics QE-22:1666 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    D. R. Yoder-Short, U. Debska, and J. K. Furdyna, “Lattice Parameters of Znx_xMnxSe and Tetrahedral Bond Lengths in A1-xIIMnxBIV Alloys,” J. Appl. Phys. 58:4056 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    L. A. Kolodziejski, R. L. Gunshor, N. Otsuka, B. P. Gu, Y. Hefetz, and A. V. Nurmikko, “Two-dimensional Metastable Magnetic Semiconductor Structures,” Appl. Phys. Lett. 48:1482 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    R. L. Gunshor, L. A. Kolodziejski, M. R. Melloch, M. Vaziri, C. Choi, and N. Otsuka, “Nucleation and Characterization of Pseudomorphic ZnSe Grown on Molecular Beam Epitaxially-Grown GaAs Epilayers,” Appl. Phys. Lett. 50:xxx (1987).CrossRefGoogle Scholar
  14. 14.
    T. Yao, S. Amano, Y. Makita, and S. Naekawa, “Molecular Beam Epitaxy of ZnTe Single Crystal Thin Films,” Jpn. J. Appl. Phys. 15:1001 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    R. M. Park, N. M. Salansky, “Surface Structures and Properties of ZnSe Grown on (100) GaAs by Molecular Beam Epitaxy,” Appl. Phys. Lett. 44:249 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    T. Yao and T. Takeda, “Growth Process in Atomic Layer Epitaxy of Zn Chalcogenide Single Crystalline Films on (100) GaAs,” Appl. Phys. Lett. 48:160 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    B. F. Lewis, T. C. Lee, F. J. Grunthaner, A. Madhukar, R. Fernandez, and J. Maserjian, “RHEED Oscillation Studies of MBE Growth Kinetics and Lattice Mismatch Strain-Induced Effects During InGaAs Growth on GaAs (100),” J. Vac. Sci. Technol. B2:419(1984).ADSGoogle Scholar
  18. 18.
    D. L. Decker and R. L. Wild, “Optical Properties of α-MnSe,” Phys. Rev. B 4:3425 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    J. W. Allen, G. Lucovsky, J. C. Mikkelsen, “Optical Properties and Electronic Structure of Crossroads Material MnTe,” Solid State Commun. 24:367(1977).ADSCrossRefGoogle Scholar
  20. 20.
    J. K. Furdyna, R. B. Frankel, and U. Debska, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • L. A. Kolodziejski
    • 1
  • R. L. Gunshor
    • 1
  • A. V. Nurmikko
    • 2
  • N. Otsuka
    • 3
  1. 1.School of Electrical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Division of EngineeringBrown UniversityProvidenceUSA
  3. 3.Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations