Reflection High-Energy Electron Diffraction Intensity Oscillation — An Effective Tool of Si and GexSi1-x Molecular Beam Epitaxy

  • Tsunenori Sakamoto
  • Kunihiro Sakamoto
  • Satoru Nagao
  • Gen Hashiguchi
  • Katsuya Kuniyoshi
  • Yoshio Bando
Part of the NATO ASI Series book series (NSSB, volume 163)


Molecular beam epitaxy (MBE) is becoming an important technique for growing epitaxial Si based films. The first advantage of Si MBE is a low growth temperature, usually in the range of 400 to 800°C, which is much lower than that required for conventional techniques. The lower growth temperature reduces diffusion of dopants. The second advantage is an excellent control of doping distribution which is essential for high speed VLSI. The third advantage is an ability to fabricate heterojunction and superlattice structures. Examples are GexSi1-x strained-layer super-lattices1–5, metal suicides6,7, Si on insulators8,9 and Si hetero-junctions with III–V compound semiconductors10,11. Among them, hetero-epitaxy of GexSi1-x/Si attracts much attention because it can add to conventional Si integrated circuits exciting possibilities of hetero-junction devices. Modulation-doped GexSi1-x/Si strained-layer hetero-structures showed two-dimensional carrier gas properties and enhanced mobilities for electron2 and hole3. Recently, n-channel4 and p-channel5 modulation-doped field effect transistors were successfully fabricated.


Molecular Beam Epitaxy Molecular Beam Epitaxy Growth Intensity Oscillation RHEED Pattern Critical Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara and I.K. Robinson, Gex-Si1−x/Si strained-layer superlattice grown by molecular beam epitaxy, J. Vac. Sci. & Technol. A2: 436 (1994).ADSGoogle Scholar
  2. 2.
    H. Jorke and H.J. Herzog, Mobility enhancement in modulation-doped Si-Si1−xGex superlattice grown by molecular beam epitaxy, J. Electrochem. Soc. 133: 998 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    R. People, J.C. Bean and V.D. Lang, Modulation doping in Ge(x)Si(1−x)/Si strained layer heterostructures: effect of alloy layer thickness, doping set back, and cladding layer dopant concentration, J. Vac. Sci. & Technol. A3: 846 (1985).ADSGoogle Scholar
  4. 4.
    H. Daembkes, H.J. Herzog, H. Jorke, H. Kibbel and E. Kaspar, The n-channel SiGe/Si modulation-doped field-effect transistor, IEEE trans. Electron Devices ED-33: 633 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    T.P. Pearsail and J.C. Bean, Enhancement- and depletion-mode p-channel GexSi1−x modulation-doped FET’s, IEEE Electron Device Lett. EDL-7: 308 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    S. Saito, H. Ishiwara and S. Furukawa, Double heteroepitaxy in the Si(111)/CoSi /Si structure, Appl. Phys. Lett. 37: 203 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    R.T. Tung, J.M. Gibson, and A.F.J. Levi, Growth of strained-layer semi-conductor-metal-semiconductor heterostructures, Appl. Phys. Lett. 48: 1264 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    H. Ishiwara and T. Asano, Silicon/insulator heteroepitaxial structures formed by vacuum deposition of CaF2 and Si, Appl. Phys. Lett. 40: 66 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    A. Munoz-Yague and C. Fontaine, Molecular beam epitaxy of insulating fluoride-semiconductor heterostructures, Surf. Sci. 168: 626 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    S. Nishi, H. Inomata, M. Akiyama and K. Kaminishi, Growth of single domain GaAs on 2-inch Si(100) substrate by molecular beam epitaxy, Jpn. J. Appl. Phys. 24: L391 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    R. Fischer and H. Morkoc, III–V semiconductors on Si substrates: new direction for heterojunction electronics, Solid State Electron. 29: 269 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    J.J. Harris, B.A. Joyce and P.J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE, Surf. Sci. 103: L90 (1981).CrossRefGoogle Scholar
  13. 13.
    C.E.C. Wood, RED intensity oscillations during MBE of GaAs, Surf. Sci. 108: L441 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Neave, B.A. Joyce, P.J. Dobson and N. Norton, Dynamics of film growth of GaAs by MBE from Rheed observation, Appl. Phys. A31: 1 (1983).ADSGoogle Scholar
  15. 15.
    J.M. Van Hove, C.S. Lent, P.R. Pukite and P.I. Cohen, Damped oscillation in reflection high-energy electron diffraction during GaAs MBS, J. Vac. Sci. & Technol. B1: 741 (1983).CrossRefGoogle Scholar
  16. 16.
    T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima and Y. Bando, Well defined superlattice structures made by phase-locked epitaxy using RHEED intensity oscillation, Superlattices and Micro-structures 1: 347 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai and T. Kojima, Phase-locked epitaxy using RHEED intensity oscillation, Jpn. J. Appl. Phys. 23: L657 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    T. Sakamoto, N.J. Kawai, T. Nakagawa, K. Ohta and T. Kojima, Intensity oscillations of reflection high-energy electron diffraction during silicon molecular beam epitaxial growth, Appl. Phys. Lett. 47: 617 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    T. Sakamoto and G. Hashiguchi, Si(001)−2×1 single-domain structure obtained by high temperature annealing, Jpn. J. Appl. Phys. 25: L78 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    T. Sakamoto, T. Kawamura and G. Hashiguchi, Observation of alternating reconstructions of silicon(001) 2×1 and 1×2 using reflection high-energy electron diffraction during molecular beam epitaxy, Appl. Phys. Lett. 48: 1612 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    K. Sakamoto, T. Sakamoto, S. Nagao, G. Hashiguchi, K. Kuniyoshi and Y. Bando, Reflection high-energy electron diffraction intensity oscillations during GexSi1−x MBE growth on Si(001) substrates, submitted to Jpn. J. Appl. Phys. Google Scholar
  22. 22.
    A. Ishizuka and Y. Shiraki, Low temperature surface cleaning of silicon and its application to silicon MBE, J. Electrochem. Soc. 133: 666 (1986).CrossRefGoogle Scholar
  23. 23.
    K. Kugimiya, Y. Shirafuji and M. Matsuo, Si-beam radiation cleaning in molecular-beam epitaxy, Jpn. J. Appl. Phys. 24: 564. (1985).ADSCrossRefGoogle Scholar
  24. 24.
    R. Kaplan, LEED study of the stepped surface of vicinal Si(001), Surf. Sci. 93: 145 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    N. Aizaki and T. Tatsuni, In situ RHEED observation of selective diminution at Si(001)−2×1 superlattice spots during MBE, Surf. Sci. 174: 658 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    T. Kawamura, P.A. Maksym and Iijima, Calculation of RHEED intensities from stepped surfaces, Surf. Sci. 148: L671 (1984).CrossRefGoogle Scholar
  27. 27.
    T. Kawamura and P.A. Maksym, RHEED from stepped surfaces and its relation to RHEED intensity oscillations observed during MBB, Surf. Sci. 161: 12 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    T. Kawamura, T. Sakamoto and K. Ohta, Origin of azimuthal effect of RHEED intensity oscillations observed during MBE, Surf. Sci. 171: L409 (1986).CrossRefGoogle Scholar
  29. 29.
    H. Kroemer, K.J. Polasko and S.C. Wright, On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si and similar zincblende-on-diamond systems, Appl. Phys. Lett. 36: 763 (1980).ADSCrossRefGoogle Scholar
  30. 30.
    N. Otsuka, C. Choi, L.A. Kolodziejski, R.L. Gunshor, R. Fischer, C.K. Peng, H. Morkoc, Y. Nakamura and S. Nagakura, Study of heteroepitaxial interfaces by atomic resolution electron microscopy, J. Vac. Sci. & Technol. 134: 896 (1986).CrossRefGoogle Scholar
  31. 31.
    T. Kojima, K. Ohta, T. Sakamoto and T. Nakagawa: Preprints of the 33rd Spring Meeting of Japan Society of Applied Physics and of the Related Societies, Chiba, April, 1986, 4p-V-12.Google Scholar
  32. 32.
    M. Asai, H. Ueba and C. Tatsuyama, Heteroepitaxial growth of Ge films on the Si(100)−2×1 surface, J. Appl. Phys 58: 2577(1985).ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Van der Merwe, Crystal interfaces, part II. finite overgrowth, J. Appl. Phys 34: 123 (1962).CrossRefGoogle Scholar
  34. 34.
    J.W. Matthews and A.E. Blakeslee, Defects in epitaxial multilayers I. misfit dislocations, J. Cryst. Growth 27: 118 (1974).ADSGoogle Scholar
  35. 35.
    R. People and J.C. Bean, Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained layer heterostructures, Appl. Phys. Lett. 47: 322 (1986), [Erratum; 49: 229 (1986)].ADSCrossRefGoogle Scholar
  36. 36.
    T. Tatsumi and N. Aizaki: Preprints of the 33rd Spring Meeting of Japan Society of Applied Physics and of the Related Societies, Chiba, April, 1986, 4P-V-14.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Tsunenori Sakamoto
    • 1
  • Kunihiro Sakamoto
    • 1
  • Satoru Nagao
    • 1
    • 2
  • Gen Hashiguchi
    • 1
    • 3
  • Katsuya Kuniyoshi
    • 1
    • 4
  • Yoshio Bando
    • 1
    • 5
  1. 1.Electrotechnical LaboratoryTsukuba, IbarakiJapan
  2. 2.Mitsubishi Chemical Industries Research CenterJapan
  3. 3.Chuo UniversityJapan
  4. 4.Meiji UniversityJapan
  5. 5.National Institute for Research in Inorganic MaterialsTsukuba, IbarakiJapan

Personalised recommendations