Advertisement

Growth and Structure of Compositionally Modulated Amorphous Semiconductor Superlattices and Heterojunctions

  • L. Yang
  • B. Abeles
Part of the NATO ASI Series book series (NSSB, volume 163)

Abstract

Over the past fifteen years research on single-crystal semiconductor superlattices has grown to be a major subfield of semiconductor physics. Thus, it is remarkable that it is only in the past three years that the first published reports of superlattices made from the prototypical amorphous semiconductor, amorphous hydrogenated silicon (a-Si:H), have appeared.1–4 The main reason for the late start of the amorphous semiconductor superlattice field may have been the widely held preconception that epitaxial growth of single crystals is required for the synthesis of high quality multilayer structures, with uniform atomically abrupt layers. Recent transmission electron microscopy work5–7 on the structure of amorphous superlattices has amply demonstrated that highly regular superlattices can be made from the a-Si:H family of materials, synthesized by low temperature (≲ 300°C) plasma-assisted chemical vapor deposition (PCVD).

Keywords

Valence Band Amorphous Semiconductor Sublayer Thickness Overlayer Thickness Roughness Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Abeles and T. Tiedje, Phys. Rev. Lett. 51:2003 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    M. Hirose and S. Miyazaki, J. Non-Cryst. Solids 66:327 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    M. Hundhausen, L. Ley and R. Carius, Phys. Rev. Lett. 53:1598 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    J. Kakalios and H. Fritzsche, Phys. Rev. Lett. 53:1602 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    H. Deckman, J. H. Dunsmuir, and B. Abeles, Appl. Phys. Lett. 46:171 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    R. Cheng, S. Wen, J. Feng, and H. Fritzsche, Appl. Phys. Lett. 46:592 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    C. C. Tsai, Materials Research Society Symposia Proceedings 70, 1986 (in print).Google Scholar
  8. 8.
    Proceedings 18th International Conference on Physics of Semiconductors Stockholm, 1986; Proc. 11th International Conference on Amorphous and Liquid Semiconductors, Editors F. Evangelisti and J. Stuke North Holland, Amsterdam 1985.Google Scholar
  9. 9.
    T. Tiedje, B. Abeles, P. D. Persans, B. G. Brooks, and G. D. Cody, J. of Non-Cryst. Solids 66:345 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    J. Kakalios, H. Fritzsche, N. Ibaraki, and S. R. Ovshinsky, J. Non-Cryst. Solids 66:339 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    Z. M. Chen, J. N. Wang, X. Y. Mei, and G. L. Kong, Solid State Commun. 58:379 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    P. D. Persans, B. Abeles, J. Scanlon, and H. Stasiewski, in Proceedings of the Seventeenth International Conference on the Physics of Semiconductors, San Francisco, 1984, edited by D. J. Chadi and W. A. Harrison (Springer, New York, 1985), p. 499. C. R. Wronski, P. D. Persans and B. Abeles, Appl. Phys. Lett. (in print).Google Scholar
  13. 13.
    T. Tiedje, B. Abeles, and B. Brooks, Phys. Rev. Lett. 54:254 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    C. R. Wronski, T. Tiedje, P. D. Persans, B. Abeles, and M. Hicks Appl. Phys. Lett. (in print).Google Scholar
  15. 15.
    T. Tiedje and B. Abeles, Appl. Phys. Lett. 45:179 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    C. B. Roxlo, B. Abeles, and T. Tiedje, Phys. Rev. Lett 52:1994 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    C. B. Roxlo and B. Abeles, Phys. Rev. B 34:2522 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    S. Tsuda et al, Conference Record of 18th Photovoltaic Specialists Conference, IEEE, New York 1985, p. 1295.Google Scholar
  19. 19.
    R. A. Arya, A. Catalano, J. O’Dwood, J. Morris, and G. Wood ibid ref. 18 p. 1710.Google Scholar
  20. 20.
    D. Kruangam, M. Deguchi, T. Endo, W. Guang, P. H. Okamoto, and Y. Hamakawa 18th Int. Conf. Solid State Devices and Materials Tokyo 1986.Google Scholar
  21. 21.
    B. Abeles, L. Yang, P. D. Persans, H. Stasiewski, and W. Lanford, Appl. Phys. Lett. 48:168 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    W. A. Lanford and B. Abeles, Nuclear Instr. and Methods in Physics Research B15, (1986).Google Scholar
  23. 23.
    B. Abeles, L. Yang, E. Eberhardt, and C. B. Roxlo, Proceedings 18th Int. Conf. on Physics of Semiconductors, Stockholm (1986).Google Scholar
  24. 24.
    P. D. Persans, A. F. Ruppert, B. Abeles, and T. Tiedje, Phys. Rev. B32:5558 (1985).ADSGoogle Scholar
  25. 25.
    C. B. Roxlo, B. Abeles, and P. D. Persans, J. Vac. Sci. Tech. (in print).Google Scholar
  26. 26.
    T. Tiedje, B. G. Brooks, and B. Abeles, AIP Conf. Proc. 120:416 (1984).ADSGoogle Scholar
  27. 27.
    B. Abeles, I. Wagner, W. Eberhardt, J. Stohr, H. Stasiewski, and F. Sette, AIP Conf. Proc. 120:394 (1984).ADSCrossRefGoogle Scholar
  28. 28.
    F. Evangelisti, P. Fiorini, C. Giovannella, F. Patella, P. Pefetti, C. Quaresima, and M. Capizzi, Appl. Phys. Lett. 44:764 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    L. Yang, B. Abeles, and P. D. Persans, Appl. Phys. Lett. 49:631 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    B. Abeles, T. Tiedje, T. Liang, H. W. Deckman, H. W. Stasiewski, J. C. Scanion, and P. M. Eisenberger, J. Non-Cryst. Solids 66:351 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    L. Ley, J. Reichardt, and R. L. Johnson, in Proceedings of the 17th Int. Conf. Phys. of Semiconductors, San Francisco, 1984, Edited by D. J. Chadi and W. A. Harrison (Springer NY, 1985).Google Scholar
  32. 32.
    J. C. Phillips, Phys. Rev. Lett. 20:550 (1968)ADSCrossRefGoogle Scholar
  33. 32a.
    D. E. Aspnes and J. B. Theeten, J. Appl. Phys. 50:4928 (1979).ADSCrossRefGoogle Scholar
  34. 33.
    H. Wagner and W. Beyer, Solid State Commun. 48:585 (1983).ADSCrossRefGoogle Scholar
  35. 34.
    L. Ley in the Physics of Hydrogenated Amorphous Silicon Vol. II J. D. Joannopoulos and G. Lucovsky, Editors (Springer, Berlin 1984) p. 61.CrossRefGoogle Scholar
  36. 35.
    G. Hollinger and F. S. Himpsel, J. Vac. Sci. Technol. Al, 640 (1982).Google Scholar
  37. 36.
    T. Tiedje, J. M. Cebulka, D. L. Morel, and B. Abeles, Phys. Rev. Lett. 46:1425 (1981).ADSCrossRefGoogle Scholar
  38. 37.
    D. Zdetsis, E. N. Economu, D. A. Papaconstantopoulus, and N. Flytzanis, Phys. Rev. B31:2410 (1985).ADSGoogle Scholar
  39. 38.
    M. L. Knotek, R. H. Stulen, G. M. Loubriel, V. Rehn, R. A. Rosenberg, and C. C. Parks, Surface Science 291 (1983).Google Scholar
  40. 39.
    D. Wesner and W. Eberhardt, Phys. Rev. B28:7087 (1983).ADSGoogle Scholar
  41. 40.
    F. Evangelisti, F. Patella, R. A. Riedel, G. Margaritondo, P. Fiorini, P. Perfetti, and C. Quaresima Phys. Rev. Lett 53:2504 (1984).ADSCrossRefGoogle Scholar
  42. 41.
    A. Quattropani, F. Bassani, G. Margaritondo, and G. Tinivella, Noovocimento 51B:N.2 355 (1979).ADSGoogle Scholar
  43. 42.
    N. W. Ashcroft and N. D. Meermin, Solid State Physics, Saunders College, Philadelphia (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • L. Yang
    • 1
  • B. Abeles
    • 1
  1. 1.Exxon Research and Engineering Co.AnnandaleUSA

Personalised recommendations