The Preparation of Modulated Semiconductor Structures by Liquid Phase Epitaxy

  • E. Bauser
Part of the NATO ASI Series book series (NSSB, volume 163)


The paper discusses the particular advantages which liquid phase epitaxy (LPE) offers for the production of low-dimensional structures. It deals with the progress which growth techniques and growth apparature have made. It describes present and future capabilities of the LPE technique in the preparation of semiconductor superlattices, quantum well structures and heterostructures. The possibilities are described for controlling the morphologies of surfaces and interfaces by means of different crystal growth mechanisms.


Liquid Phase Epitaxy Growth Step Growth Interface Lateral Overgrowth Liquid Phase Epitaxy Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.D. Greene, Liquid-Phase Epitaxy, in: ISSCG, 6th International Summer School on Crystal Growth, Lecture Notes Vol. 1, p. 187, Edinburg, July 1986.Google Scholar
  2. 2.
    E. Bauser and H.P. Strunk, Silizium-Epitaxieschichten mittels Lösungstransport durch Fliehkraft und deren strukturelle und elektrische Charakterisierung überwiegend mit elektronenmikroskopischen Methoden, Forschungsbericht BMFT FB T 86 – 142, in press.Google Scholar
  3. 3.
    E. Bauser and H.P. Strunk, Microscopic Growth Mechanisms of Semiconductors: Experiments and Models, J. of Crystal Growth 69: 561 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    K. Kelting, K. Koehler, and P. Zwicknagl, Luminescence of Ga1-xAlxAs/ GaAs single quantum wells grown by liquid phase epitaxy, Appl. Phys. Lett. 48: 157 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    H. Hillmer, G. Mayer, A. Forchel, K.S. Löchner and E. Bauser, Optical time-of-flight investigations of ambipolar carrier transport in GaAlAs using GaAs/GaAlAs double quantum well structures, Appl. Phys. Lett. 49: 948 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    E. Bauser, D. Käss, M. Warth and H.P. Strunk, Silicon layers grown on Patterned Substrates by Liquid Phase Epitaxy, in: Mat. Res. Soc. Symp. Proc. Vol. 54: 267, 1986 Materials Research Society.Google Scholar
  7. 7.
    E. Bauser and H.P. Strunk. Dislocations as Growth Step Sources in Solution Growth and their Influence on Interface Structures, Thin Solid Films 93: 185 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    H. Kressel and H. Nelson, Properties and Applications of III-V Compound Films Deposited by Liquid Phase Epitaxy, in: Physics of Thin Films, Vol. 7, Academic Press, New York (1973).Google Scholar
  9. 9.
    M.B. Panish, I. Hayashi and S. Sumski, Double-Heterostructure Injection Lasers with Room-Temperature Thresholds as low as 2300 A/cm2, Appl. Phys. Letts. 16: 326 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    Zh.I. Alferov, M.V. Andreev, E. Korolkov, E.L. Portnoi and D.N. Tretyakov, Coherent Radiation of Epitaxial Heterojunction Structures in the AlGa-GaAs System, Soviet Phys. Semiconductors 2: 1289 (1969).Google Scholar
  11. 11.
    H.J. Scheel, A New Technique for Multilayer LPE, J. of Crystal Growth 42: 301 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    E. Bauser, L. Schmidt, K.S. Löchner and E. Raabe, Liquid Phase Epitaxy Apparatus for Multiple Layers utilizing Centrifugal Forces, Japan. J. Appl. Phys. 16, Suppl. 16–1: 457 (1977).Google Scholar
  13. 13.
    G. Schweitzer, A. Traxler, H. Bleuler, E. Bauser and P. Koroknay, Magnetische Lagerung einer Epitaxiezentrifuge bei Hochvakuumbedingungen, Vakuum-Technik 32: 70 (1983).Google Scholar
  14. 14.
    G. Schweitzer, Regelungstechnik in der Mechanik: Anwendung auf Magnetlager, SIA-Zeitschrift 9: 275 (1983).Google Scholar
  15. 15.
    D. Käss, M. Warth, W. Appel, H.P. Strunk and E. Bauser, Silicon Multilayers grown by Liquid Phase Epitaxy, in: “Silicon Molecular Beam Epitaxy”, Proc. Vol. 85–7, J.C. Bean, ed., The Electrochem. Soc., Pennington NJ, USA (1985), p. 250.Google Scholar
  16. 16.
    H.P. Trah et al., to be published.Google Scholar
  17. 17.
    E. Bauser, D. Käss, M. Warth and H.P. Strunk, Silicon layers grown on patterned substrates by Liquid Phase Epitaxy, Mat. Res. Soc. Symp. Proc. 54: 267 (1986).CrossRefGoogle Scholar
  18. 18.
    W.H. Appel, Flüssigphasenepitaxie von Silizium: Wachstumskinetik und Eigenschaften der Schichten, Thesis, Universität Stuttgart (1985).Google Scholar
  19. 19.
    E. Bauser and H. Strunk, Analysis of Dislocations Creating Monomolecular Growth Steps, J. of Crystal Growth 51: 362 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    D.L. Rode, Surface Dislocation Theory of Reconstructed Crystals, Phys. Status Solidi (a) 32: 425 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    J.H. Neave, P.J. Dobson and B.A. Joyce, Reflection high-energy electron diffraction oscillations from vicinal surfaces — a new approach to surface diffusion measurements, Appl. Phys. Lett. 47: 100 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    B.A. Joyce, P.J. Dobson, J.H. Neave and K. Woodbridge, Rheed Studies of Heterojunction and Quantum Well Formation during MBE Growth — From Multiple Scattering to Band Offsets, Surface Science 168: 423 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    J. Christen, D. Bimberg, T. Fukanaka and H. Nakashima, Direct Imaging of Monolayer Islands at GaAs/GaAlAs Interfaces, in: Sol. State Devices 1986, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • E. Bauser
    • 1
  1. 1.Max-Planck-institut fuer FestkoerperforschungStuttgart 80Germany

Personalised recommendations