Advertisement

Path Integrals pp 239-284 | Cite as

Useful Bounds on Interesting Quantities by Path Integrals

  • J. M. Luttinger
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)

Abstract

In these lectures I shall discuss some interesting consequences of the representation of Green’s functions by means of path integrals. First we shall discuss a lower bound for the partition function of a system that follows from this representation, and show how it may be used to discuss the density of energy levels of a model disordered system. Second a very natural upper bound will be discussed, and it will be shown that special cases of this comprise all the well-known “isoperimetric inequalities” of physics and geometry.

Keywords

Partition Function Thermodynamic Limit Path Integral Isoperimetric Inequality Skin Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatt, J. and Weisskopf, V., Nuclear Physics (Wiley, N.Y., 1956).Google Scholar
  2. Donsker, M. D. and Varadhan, S.R.S., Comm. Pure and Applied Math. 28, 1 (1975);MathSciNetCrossRefMATHGoogle Scholar
  3. Donsker, M. D. and Varadhan, S.R.S., Comm. Pure and Applied Math. 28, 279 (1975);CrossRefMATHGoogle Scholar
  4. Donsker, M. D. and Varadhan, S.R.S., Comm. Pure and Applied Math. 28, 525 (1975). The last paper also contains the evaluation of expressions like (1.23). See also Proc. Int. Conf. on Function Space Integration (Oxford, 1974) for a preliminary report.MathSciNetCrossRefMATHGoogle Scholar
  5. Edwards, S.F. and Gulyaev, V. B., Proc. Phys. Soc. London 83, 495 (1965). Their result was for time rather than temperature Green’s functions, i.e. t -> it.ADSCrossRefGoogle Scholar
  6. Friedberg, R. and Luttinger, J. M., Phys. Rev. B12 4460 (1975).MathSciNetADSCrossRefGoogle Scholar
  7. Hardy, G.H., Littlewood, J.E. and Polya, G., Inequalities, Cambridge University Press, London and New York, 2nd Edition, p.276 ff (1952).MATHGoogle Scholar
  8. Hemmer, P. C., Phys. Norv. 3, 9 (1968).Google Scholar
  9. Kac, M., Probability and Related Topics in Physical Science (Interscience, N.Y., 1959), Vol.1, p.161 ff .Google Scholar
  10. Kac, M., Amer. Math. Monthly, 73. 1 (1966).CrossRefMATHGoogle Scholar
  11. Kac, M. and Luttinger, J. M., Journ. of Math. Phys. 14, 583 (1973) .MathSciNetADSCrossRefGoogle Scholar
  12. Kac, M. and Luttinger, J. M., Annales de l’Institute Fourrier, 25., 3 et 4, 317 (1975).MathSciNetCrossRefMATHGoogle Scholar
  13. Kubo, R., J. Phys. Soc. Japan, 17, 1100 (1962).MathSciNetADSCrossRefMATHGoogle Scholar
  14. Lifshitz, I.M., Usp. Fiz. Nauk 83, 617 (1964) [Soviet Physics Usp. 7, 549 (1965)].Google Scholar
  15. Luttinger, J.M., Proc. Nat. Acad, of Sciences USA, 70 , 1005 (1973)MathSciNetADSCrossRefMATHGoogle Scholar
  16. Luttinger, J.M., J. Math. Phys. 14, 586 (1973).MathSciNetADSCrossRefGoogle Scholar
  17. Luttinger, J.M., J. Math. Phys. 14, 1444 (1973).MathSciNetADSCrossRefGoogle Scholar
  18. Luttinger, J.M., J.’Math. Phys. 14, 1448 (1973).ADSCrossRefGoogle Scholar
  19. Luttinger, J.M., Phys. Rev. B13, 2596 (1976).ADSCrossRefGoogle Scholar
  20. Luttinger, J. M. and Friedberg, R., Archive for Rat. Mech. and Anal., 61, 45 (1976);MathSciNetADSMATHGoogle Scholar
  21. Luttinger, J. M. and Friedberg, R. Archive for Rat. Mech. and Anal., 61, 35 (1976).MathSciNetADSMATHGoogle Scholar
  22. A more general theorem and much simpler proof may be found in Brascamp, H. J., Lieb, E.H. and Luttinger, J.N., Jour. of Funct. Anal. 17., 227 (1974).MathSciNetCrossRefMATHGoogle Scholar
  23. Spitzer, F., Zeit. für Wahrscheinlichkeitrechnung 3, 110 (1964).MathSciNetCrossRefMATHGoogle Scholar
  24. Uhlenbeck, G. and Ford, G.W., Studies in Stat. Mech. (North-Holland, Amsterdam, 1962) Vol.I, Part B.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. M. Luttinger
    • 1
  1. 1.Department of PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations