Path Integrals pp 201-235 | Cite as

Explicit Functional Integration Method for Determining Approximate Stationary States in Quantum Field Theories

  • Gerald Rosen
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)


The Ray1eigh-Ritz procedure for functionalities, an explicit functional integration method for determining approximate stationary states in quantum field theories, is described and illustrated here for certain models with simply chosen expressions for the trial state functionals. Approximate vacuum, one-particle and two-particle (noninteracting, bound or scattering) stationary states are derived for generic self-interacting real scalar theories without renormalization, for a nonre1ativistic real scalar-Weyl spinor model with renormalization, and for a self — interacting complex scalar model with renormalization.


Functional Integration Hamiltonian Operator Energy Functionality Relativistic Wave Equation Real Scalar Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, J.P. Hsu, Phys.Rev.Letters 36, 646 (1976); M.Creutz, “Quantum Mechanics of Extended Objects in Relativistic Field Theory” (preprint of paper to appear in Physical Review D); J.Hietarinta, “On the Existence of Confied Solutions in Nonlinear Chiral Theories” (preprint of paper to appear in Physical Review D), and works cited therein. Alternative functional integration and other approaches to quantized “particlelike” solutions have been proposed by other authors, including :ADSCrossRefGoogle Scholar
  2. 1a.
    R.F. Dashen et al., Phys. Rev. D 10, 4114 (1974);ADSCrossRefGoogle Scholar
  3. 1b.
    R.F. Dashen et al., Phys. Rev. D 11 3424 (1975);MathSciNetADSCrossRefGoogle Scholar
  4. 1c.
    J.L. Gervais et al., Phys.Rev. D 12, 1038 (1975);ADSCrossRefGoogle Scholar
  5. 1d.
    J. Goldstone and R. Jackiw, Phys.Rev.D 11, 1486 (1975).ADSCrossRefGoogle Scholar
  6. 2.
    For example, P.M. Morse and H. Feshback, Methods of Theoretical Physics (McGraw-Hill, Inc., New York, 1953) pp.1117–1119, 1696–1698, 1734–1738.MATHGoogle Scholar
  7. 3.
    G. Rosen, Phys . Rev . Letters 16, 704 (1966);ADSCrossRefGoogle Scholar
  8. 3a.
    G. Rosen, Phys. Rev. 156, 1517 (1967);ADSCrossRefGoogle Scholar
  9. 3b.
    G. Rosen, Phys. Rev. 160, 1278 (1967);ADSCrossRefGoogle Scholar
  10. 3c.
    G. Rosen, Phys. Rev.165, 1934 (1968);ADSCrossRefGoogle Scholar
  11. 3d.
    G. Rosen, Phys. Rev.167, 1395 (1968);ADSCrossRefGoogle Scholar
  12. 3e.
    G. Rosen, Phys. Rev.172, 1632 (1968);ADSCrossRefGoogle Scholar
  13. 3f.
    G. Rosen, Phys. Rev.173, 1680 (1968);ADSCrossRefGoogle Scholar
  14. 3g.
    G. Rosen, J.Math Phys. 9, 804 (1968);ADSCrossRefMATHGoogle Scholar
  15. 3h.
    G. Rosen, Nuovo Cim. 57A, 870 (1968);ADSCrossRefGoogle Scholar
  16. 3i.
    G. Rosen, J. Franklin Inst. 287, 261 (1969).CrossRefGoogle Scholar
  17. 4.
    G. Rosen, Formulations of Classical and Quantum Dynamical Theory (Academic Press, Inc., New York, 1969) .MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Gerald Rosen
    • 1
  1. 1.Department of PhysicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations